(4) กฎหมายป่าไม้ เลขที่ 01/1996 ปี ค.ศ. 1996

หลักเกณฑ์และข้อกฎหมายมีผลในเรื่องของการใช้ การจัดการ การป้องกัน การอนุรักษ์ และการ ฟึ้นฟูทรัพยากรป่าไม้โดยมีจุดมุ่งหมายให้การใช้ทรัพยากรป่าไม้ให้มีความยั่งยืนเพื่อสนับสนุนในเรื่องของ เศรษฐูกิจระดับชาติและการพัฒนาสังคม นอกจากนี้ยังเป็นการรับรองในเรื่องการป้องกันและอนุรักษ์ลุ่มน้ำ การ ป้องกันการชะล้างพังทลายของดิน รวมถึงการป้องกันพรรณพืช พันธุ์สัตว์ และสภาพสิ่งแวดล้อม

ตามกฎหมายฉบับนี้ได้มีการแบ่งประเภทของป่าไม้ออกเป็น 6 ชนิด ประกอบไปด้วย

- ป่าผลิต (Production Forests): ในทางการกฎหมายระบุไว้ว่าการใช้ประโยชน์จาก ป่าประเภทนี้เพื่อทางเศรษฐูกิจระดับชาติ การพัฒนาสังคม และสำหรับวิถีชีวิตของประชาชน โดยการใช้ ประโยชน์จากป่าชนิดนี้ เช่น ไม้หรือผลผลิตอื่นๆจากป่านั้นต้องไม่ก่อให้เกิดผลกระทบด้านลบที่สำคัญต่อป่า ชนิดนี้
- ป่าอนุรักษ์ (Conservation Forests): เป็นพื้นที่ป่าที่ถูกจำแนกไว้โดยมีวัตถุประสงค์ สำหรับเพื่อป้องกันและอนุรักษ์พรรณไม้และพันธุ์สัตว์ ที่อยู่อาศัยทางธรรมชาติ รวมไปถึงสิ่งที่เป็นเอกลักษณ์ ทางประวัติศาสตร์ แหล่งท่องเที่ยวทางวัฒนธรรม และสิ่งมีคุณค่าทางสิ่งแวดล้อม การศึกษา และวิทยาศาสตร์
- ป่าป้องกัน (Protection Forests) เป็นพื้นที่ป่าที่ถูกจำแนกเพื่อป้องกันพื้นที่ลุ่มน้ำและ ควบคุมการชะล้างพังทะลายของดิน นอกจากนี้ป้าประเภทนี้ยังจำแนกได้เป็นป่าป้องกันที่สำคัญระดับชาติ พื้นที่ สำหรับป้องกันภัยธรรมชาติ และพื้นที่ป้องกันทางด้านสิ่งแวดล้อม
- ป่าฟื้นฟู (Regeneration Forests) เป็นพื้นที่ที่ถูกจำแนกไว้สำหรับฟื้นฟูและบำรุงป่า ซึ่งพรรณไม้อยู่ในวัยที่กำลังเจริญเติบโต
- ป่าเสื่อม โทรม (Degraded Forests) เป็นพื้นที่ป่าที่ได้รับความเสียหายอย่างหนัก โดย พื้นที่ป่าไม้ชนิดนี้ยังถูกจัดสรรเพื่อไว้สำหรับการปลูกไม้ การเกษตรกรรมอย่างถาวร และเลี้ยงสัตว์ รวมทั้งยัง เป็นที่สำหรับกิจกรรมในด้านอื่นๆตามแผนพัฒนาเศรษฐูกิจของประเทศ สปป.ลาว
- ป่ารุ่นสอง หรือป่าที่มีต้นไม้สูงไม่เกิน 2 เมตร (Unstocked Forests) เป็นพื้นที่ป่าที่มี ความหนาแน่นของพรรณไม้ลดลง หรือน้อยกว่าร้อยละ 20 ของขนาดพื้นที่ทั้งหมด อันเนื่องมาจากการตัดไม้ การแผ้วทางที่ดินสำหรับเพาะปลูก หรือเป็นพื้นที่ที่ถูกรบกวนอย่างหนัก ซึ่งพื้นที่ดังกล่าวถูกปล่อยไว้สำหรับให้ พรรณพืชเจริญเติบโตและไม่มีการรบกวน เพื่อคืนสภาพเป็นป่าได้

สำหรับการชดเชยค่าเสียหายกรณีเคลื่อนย้ายพรรณไม้ออกจากพื้นที่ต้องอิงตามกฎหมายป่าไม้ฉบับ นี้ โดยการชดเชยค่าเสียหายขึ้นอยู่กับปริมาณและชนิดของไม้ที่ถูกตัดออกไป โดยการชดเชยค่าเสียหายนั้นจะ ดำเนินการจ่ายเฉพาะไม้ที่ถูกตัดออกและผลิตภัณฑ์อื่นๆ เช่น ไม้ไผ่ ที่อยู่ในพื้นที่ของเอกชน แต่ไม่มีการจ่าย

ค่าชดเชยกรณีที่ตัดและขนย้ายไม้รวมถึงผลิตภัณฑ์จากป่าเช่น ไม้ไผ่ เห็ด ที่อยู่ในบริเวณป่าธรรมชาติซึ่งระบุเป็น พื้นที่สาธารณะ

สำหรับอัตราการชดเชยค่าเสียหายอยู่ที่ 23 USS ต่อลูกบาศก์เมตร สำหรับชนิดของไม้ที่มีคุณภาพ ต่ำ และมีอัตราสูงสุดอยู่ที่ท 99 US\$ ต่อลูกบาศก์เมตร สำหรับชนิดของไม้ที่มีคุณภาพสูง โดยอัตราดังกล่าวบัญญูติ ขึ้น โดยรัฐบาลแห่งสาธารณรัฐประชาธิปไตยประชาชนลาวภายใต้กฎหมายป่าไม้

ในช่วงทำการสำรวจ ทางเจ้าหน้าที่ป่าไม้แขวงหรือเมืองต้องลงไปดำเนินการเพื่อประเมินปริมาณ ไม้ที่ต้องถูกตัดและขนย้ายออกจากพื้นที่ป่าไม้ธรรมชาติ หรือป่าไม้ที่ใช้สำหรับทำการเพาะปลูกเพื่อใช้เป็นพื้นที่ จัดตั้งโครงการ ซึ่งรายงานการประเมินจะถูกจัดเตรียมและนำส่งไปยังกรมป่าไม้ ณ นครหลวงเวียงจันทน์ ซึ่งจะ เป็นผู้รับผิดชอบในการตรวจสอบและะด็นผู้อนุญาตให้ทำการต้ดไม้ได้

เจ้าของ โครงการต้องเป็นผู้รับผิดชอบค่าใช้จ่ายทั้งหมดให้กับกรมป่าไม้ประกอบไปด้วยค่าสำรวจ เพื่อประเมินปริมาณไม้ที่ต้องถูกตัด และค่าใช้จ่ายในการตรวจวัดและทำสัญลักษณ์ไม้ที่ต้องถูกตัดในช่วงระยะ ก่อสร้างโครงการ
(5) กฎหมายทางหลวง ปี ก.ศ. 1999

- มาตรา 15 ผู้ดำเนินการก่อสร้างทางหลวงต้องปฏิบัติตามเอกสารออกแบบ รับประกัน คุณภาพ ความปลอดภัยและรักษาสิ่งแวดล้อม
- มาตรา 19 การเวนคืนที่ดินเพื่อกิจการของหลวง ในการก่อสร้างทางหลวงประเภทต่างๆ หากมีความจำเป็นในการใช้ที่ดินของบุคคล หรือการจัดตั้งที่ได้รับสิทธินำใช้ที่ดินอย่างถูกต้องตามกฎหมาย ต้องได้รับการทดแทนที่ดินตามความเหมาะสม

มาตรา 20 ขอบเขตทางหลวง คือพื้นที่ถนนทั้งหมด คือผิวถนน ไหล่ถนน ทางคนเดิน ร่องระบายน้ำ ตสิ่งถนน และแนวสงวนของทางหลวง ความกว้างของทางหลวงแต่ละประเภท เป็นดังนี้
¥ ทางหลวงแห่งชาติ กว้างจากจุดกึ่งกลางถนนออกไปด้านละ 25 เมตร

- ทางหลวงแขวง กว้างจากจุดกึ่งกลางถนนออกไปด้านละ 15 เมตร

ะ ทางหลวงเมือง กว้างจากจุดกึ่งกลางถนนออกไปด้านละ 10 เมตร

- ทางหลวงชนบท กว้างจากจุดกึ่งกลางถนนออกไปด้านละ 5 เมตร
(6) การชดเชยและโยกย้ายจัดสรรสำหรับประชาชนที่ได้รับผลกระทบจากโครงการพัฒนา (2005) ประกาศของสำนักนายกรัฐมนตรี เลขที่ 192/นย

ประกาศฉบับนี้กล่าวถึงหลักการ กฎระเบียบ การชดเชยเพื่อบรรเทาผลกระทบทางสังคม และ ชดเชยความเสียหายที่เกิดขึ้นจาก โครงการพัฒนา สรุปดังนี้
. ผู้ที่ได้รับผลกระทบจากโครงการจะได้รับการชดเชยต่อความเสียหายอย่างเต็มจำนวน หรือบางส่วน ในราคาที่ซื้อทดแทน

- ในความเสียหายต่อที่ดินนั้น ให้ดำเนินการหาที่ดินทดแทนในขนาดและความอุดม สมบูรณ์ทัดเทียมพื้นที่เดิมเป็นลำดับแรก เว้นแต่ไม่อาจจัดหาที่ดินได้จึงให้ชดเชยเป็นเงิน
- ถ้าสิ่งปลูกสร้างหรือบ้านเรือนได้รับความเสียหายเป็นบางส่วน แต่ส่วนที่เหลือนั้นไม่ อาจใช้งานต่อไปได้ หรือมีพื้นที่เหลือน้อยกว่าขนาดบ้านที่จะอยู่อาศัยได้ ให้คิดเป็นความเสียหายทั้งหมด
- แต่ถ้าสิ่งปลูกสร้างหรือบ้านเรือนนั้นได้รับความเสียหายบางส่วน และส่วน ที่เหลือนั้นยังคงใช้งานได้ ประชาชนมีสิทธิได้รับเงินชดเชย หรือวัสดุเพื่อซ่อมแซมให้ใช้งานได้เป็นปกติ
- ถ้าหากความเสียหายนั้นเป็นความเสียหายชั่วคราว ผู้เสียหายจะได้รับการชดเชยรายได้ที่ ควรได้อย่างเต็มจำนวน ถ้าหากว่าความเสียหายนั้นน้อยกว่า 10 เดือนต่อปี จะได้รับการชดเชย 6% ของมูลค่า ทรัพย์สินนั้น แต่หากความเสียหายนั้นเกิดขึ้นยาวนานกว่าให้เป็นไปตามแต่ตกลง
- เจ้าของทรัพย์สินที่ไม่มีโฉนดหรือเอกสารสิทธิทางราชการแสดงความเป็นเจ้าของต่อ ที่ดินหรือทรัพย์สิน ให้ทางโครงการชดเชยและให้ความช่วยเหลือไม่ให้มีสถานภาพหรือความเป็นอยู่ด้อย กว่าเดิม

6.4 สภาพสิงแวดล้อมปัจจุบัน

6.4.1 อุตุนิยมวิทยาและคุณภาพอากาศ

(1) วิธีการศึกษา

รวบรวมข้อมูลจากสถานีอุตุนิยมวิทยาที่อยู่ใกล้เคียงกับพื้นที่ศึกษาและข้อมูลทุติยภูมิ ต่างๆ ที่เกี่ยวข้องกับพื้นที่โครงการ ได้แก่ ผลการตรวจวัดคุณภาพอากาศ ณ โรงเรียนเมืองหงสา ระหว่างวันที่ $24-29$ เมษายน 2548 จากรายงานการวิเคราะห์ผลกระทบสิ่งแวดล้อม โครงการ พัฒนาสายส่งไฟฟ้าแรงสูง เมืองหงสา ปี พ.ศ. 2550

ตรวจวัดคุณภาพอากาศและประมวลผลข้อมูลทิศทางและความเร็วลม ณ สโมสร บ้านโพลาด ระหว่างวันที่ 31 มีนาคม-3 เมษายน 2554
(2) ผลการศึกษา
(ก) สภาพภูมิอากาศ
สภาพภูมิอากาศโดยทั่วไปบริเวณพื้นที่ โครงการจะแบ่งออกเป็น 3 ถดูคือ ฤดูหนาว ฤดูร้อน และถดูฝน ซึ่งได้รับอิทธิพลจากลมมรสุมตะวันออกเฉียงเหนือและลมมรสุมตะวันตกเฉียงใต้เป็นหลัก ในฤดูฝนมีมรสุมที่ก่อตัวจากมหาสมุทรอินเดียในช่วงกลางเดือนพฤษภาคมจนถึงปลายเดือนตุลาคม ในช่วง เดือนกรกฎาคม สิงหาคม และกันยายน มักจะเป็นเดือนที่มีฝนตกชุก พายุหมุนที่เกิดขึ้นส่วนใหญ่จะก่อตัวขึ้นใน มหาสมุทรแปชิฟิกตะวันตกและในทะเลจีนใต้ โดยจะเคลื่อนตัวไปทางทิศตะวันตกและตะวันตกเฉียงเหนือ ซึ่ง จะเคลื่อนตัวผ่านชายผั่งทะเลของประเทศเวียตนาม และผ่านไปยังประเทศ สปป.ลาว และประเทศไทย จากนั้น จะอ่อนกำลังลงกลายเป็นพายุดีเปรสชั่นต่อไป แต่ในบางครั้งจะเกิดพายุที่ก่อตัวบนแผ่นดินระหว่างช่วงฤดูมรสุม ตะวันตกเฉียงใต้ ซึ่งจะทำให้เกิดฝนตกน้อยกว่าปกติ

ในฤดูหนาวช่วงต้นเดือนพฤศจิกายนถึงเดือนกุมภาพันธ์จะมีอากาศเย็นและแห้งเนื่องมาจากลม มรสุมตะวันออกเฉียงเหนือ ซึ่งในระหว่างนี้จะมีปริมาณฝนน้อยมากหรืออาจไม่มีฝนตกเลย

ช่วงระหว่างเดือนมีนาคมและเดือนเมษายนจะเป็นช่วงเวลาของการเปลี่ยนฤดู โดยลมมรสุม ตะวันออกเฉียงเหนือจะเริ่มอ่อนกำลังลง และมวลอากาศร้อนจะเคลื่อนตัวเข้าสู่แผ่นดินจากทิศตะวันออกและ ตะวันออกเฉียงใต้ ซึ่งจะทำให้เริ่มมีฝนตกในพื้นที่โครงการในช่วงเวลาดังกล่าว

ปริมาณน้ำฝนจากสถานีตรวจวัดอากาศไซยะบุรี เฉลี่ยรวมทั้งปีเท่ากับ $1,315.6$ มิลลิเมตร โดยในเดือนกันยายนมีปริมาณน้ำฝนเฉลี่ยมากที่สุด คือ 285.9 มิลลิเมตร และมีปริมาณน้อยที่สุด คือ 4.9 มิลลิเมตร ในเดือนกุมภาพันธ์ ส่วนปริมาณน้ำฝนจากสถานีตรวจวัดอากาศหลวงพระบาง เฉลี่ยรวมทั้งปี เท่ากับ $1,394.1$ มิลลิเมตร โดยในเดือนกรกฎาคมมีปริมาณน้ำฝนเฉลี่ยมากที่สุด คือ 231.1 มิลลิเมตร และมี ปริมาณน้อยที่สุด คือ 18.9 มิลลิเมตร ในเดือนมกราคม

รูปที่ $6.4-1$ แสดงถึงอิทธิพลของลมมรสุมและพายุหมุนต่อสภาพภูมิอากาศของประเทศ สปป.ลาว และบริเวณพื้นที่โครงการ ส่วนข้อมูลปริมาณน้ำฝนของสถานีตรวจวัดอากาศไซยะบุรีและสถานีตรวจวัดอากาศ หลวงพระบาง แสดงในตารางที่ 6.4-1 และ 6.4-2

โครงการพัตนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)
ตารางที่ $6.4-1$ ข้อมูลปริมาณน้ำฝนเฉลี่ยรายเดือนของสถานีตรวจวัดอากาศไซยะบูรี

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2005	0.0	0.0	24.3	75.8	86.9	169.8	167.9	327.8	557.3	137.3	46.2	14.2	$1,607.5$
2006	0.0	7.9	58.1	166.6	173.4	99.7	193.2	284.4	138.0	97.6	0.0	0.0	$1,218.9$
2007	0.9	2.0	20.4	119.5	222.8	150.4	79.0	170.5	204.2	265.7	18.3	2.0	$1,255.7$
2008	11.6	16.9	43.8	204.3	224.1	153.4	239.5	302.9	199.9	93.9	22.1	31.0	$1,543.4$
2009	0.0	0.0	19.4	151.0	193.2	205.9	189.0	247.7	329.9	45.1	14.7	0.7	$1,396.6$
2010	34.4	2.4	34.7	133.0	193.6	93.9	379.3	205.3	-	-	-	-	871.3
Mean	7.8	4.9	33.5	141.7	$\mathbf{1 8 2 . 3}$	$\mathbf{1 4 5 . 5}$	208.0	$\mathbf{2 5 6 . 4}$	$\mathbf{2 8 5 . 9}$	$\mathbf{1 2 7 . 9}$	$\mathbf{2 0 . 3}$	9.6	$1,315.6$

หมายเหตุ: - = ไม่มีข้อมูล

รูปที่ 6.4-1 : ลมมรสุมและพายุหมุนที่มีผลต่อสภาพภูมิอากาศในประเทศ สปป.ลาว และ ในบริเวณพื้นที่โครงการ

รายงานขั้นสุดท้าย (Final Report)

โครงการศึกษาความเป็นไปได้และออกแบบเบิ้องตัน

โครงการพัตแนาคนนจากเพืองหงสา-บ้านเขึยงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณมรููประชาธิปไดตปรรชาชนลาว (สปป.ลาว)
ตารางที่ 6.4-2 ข้อมูลปริมาณน้ำฝนเฉลี่ยรายเดือนของสถานีตรวจวัดอากาศหลวงพระบาง

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2006	0.0	21.6	73.9	28.9	93.7	78.1	106.4	266.3	164.1	122.5	0.0	0.0	955.5
2007	1.0	13.2	30.4	118.7	125.0	138.2	146.9	252.7	255.8	114.8	36.4	0.0	$1,233.1$
2008	50.4	60.6	136.6	166.5	254.7	230.6	357.9	273.7	171.3	73.8	13.4	20.0	$1,809.5$
2009	-	0.7	23.9	112.1	127.0	218.2	371.3	169.8	147.6	78.6	-	-	$1,396.6$
2010	24.0	-	24.6	169.3	115.5	146.4	172.8	156.4	175.4	186.4	236.3	168.5	$1,575.6$
Mean	18.9	24.0	57.9	119.1	143.2	162.3	231.1	223.8	182.8	115.2	71.5	47.1	$1,394.1$

หมายเหตุ:- = ไม่มีข้อมูล

สำหรับผลการตรวจวัดทิศทางและความเร็วลมบริเวณสโมสรบ้านโพลาด ระหว่างวันที่ 31 มีนาคม ถึงวันที่ 3 เมษายน 2554 (รูปที่ 6.4-2) พบว่าความเร็วลมสูงสุด 2.7 เมตรต่อวินาที ทิศทางลมส่วนใหญ่อยู่ทางทิศ ตะวันออก (รูปที่ 6.4-3 และตารางที่ 6.4-4)

รูปที่ $6.4-2$ ตำแหน่งสาถนีเก็บตัวอย่างอากาศ เสียง และความสั่นสะเทือน

Ban Pho Lad Club

รูปที่ $6.4-3$: ทิศทางและความเร็วลมบริเวณสโมสรบ้านโพลาด ระหว่างวันที่ 31 มีนาคม- 3 เมษายน $2554 \quad 11$

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว) ตารางที่ 6.4-3 ผลการตรวจวัดทิศทางลมบริเวณสโมสรบ้านโพลาด ระหว่างวันที่ 31 มีนาคม- 3 เมษายน 2554

สถานีตรวจวัด	วันที่ตรวจวัด	ความเร็วลมสูงสุด (เมตรต่อวินาที)	ทิศทางลมส่วนใหญ่
สโมสรบ้านโพลาด	31 มีนาคม-3 เมษายน 2554	2.7	ตะวันออก
(16.7%)			

ที่มา: รวบรวมและประมวลผลข้อมูลโดย บริษัท ทีม คอนซัลติ้ง เอนจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด, เมษายน 2554
(ข) คุณภาพอากาศ
จากการทบทวนรายงานผลกระทบสิ่งแวดล้อม โครงการพัฒนาสายส่งไฟฟ้าแรงสูงเมืองหงสา ปี 2550 ผลตรวจวัดความเข้มข้นของฝุ่นละอองรวม (TSP) เฉลี่ย 24 ชั่วโมง และความเข้มข้นของฝุ่นละอองขนาด ไม่เกิน 10 ไมครอน (PM-10) พบว่า มีค่าอยู่ในเกณฑ์มาตรฐานคุณภาพอากาศของประเทศ สปป.ลาว ดังแสดง ในตารางที่ 6.4-4

ตารางที่ 6.4-4
ข้อมูลคุณภาพอากาศบริเวณโรงเรียนเมืองหงสาระหว่างวันที่ $27-29$ เมษายน 2548

สถานี		วันที่ตรวจวัด	ความเข้มข้น (ไมโกรกรัม/ ลูกบาศก์เมตร)		
		TSP	PM-10		
		เฉลี่ย 24 ชั่วโมง	เฉลี่ย 24 ชั่วโมง		
โรงเรียนเมืองหงสา (745288 E, 2180740 N)			27/04/05	285.96	98.43
		28/04/05	145.44	81.74	
		29/04/05	241.25	94.75	
		เฉลี่ย	224.22	91.64	
มาตรฐาน ${ }^{1}$			330	120	

หมายเหตุ: ${ }^{1}$ มาตรฐานคุณภาพอากาศในบรรยากาศของประเทศ สปป.ลาว
ที่มา: รายงานการวิเคราะห์ผลกระทบสิ่งแวดล้อมโครงการพัฒนาสายส่งไฟฟ้าแรงสูงเมืองหงสา ปี พ.ศ. 2550

สำหรับผลการตรวจวัดคุณภาพอากาศ ระหว่างวันที่ 31 มีนาคม ถึงวันที่ 3 เมษายน 2554 พบว่า ความเข้มข้นของก๊าซคาร์บอนมอนอกไซด์ ก๊าซไนโตรเจนไดออกไซด์ และก๊าซซัลเฟอร์ไดออกไซด์ มีค่าอยู่ใน เกณฑ์มาตรฐานของประเทศ สปป.ลาว โดยค่าความเข้มข้นของก๊าซคาร์บอนมอนอกไซด์เฉลี่ย 1 ชั่วโมง มี ค่าสูงสุดอยู่ในช่วง $458.08-687.12$ ไมโครกรัมต่อลูกบาศก์เมตร ก๊าซไนโตรเจนไดออกไซด์มีค่าความเข้มข้น

สูงสุดคฉฉลี่ย 1 ชั่วโมง อยู่ในช่วง $29.35-62.84$ ไมโครกรัมต่อลูกบาศก์เมตร ก๊าซชัลเฟอร์ไดออกไซด์มีค่าความ เข้มข้นสูงสุดเฉล่่ย 1 ชั่วโมง และเฉลี่ย 24 ชั่วโมง ออู่ในช่วง $6.02-6.81$ ไมโครกรัมต่อลูกบาศกกเมตร และ 5.50 6.02 ไมโครกรัมต่อลูกบาศก์เมตร ตามลำดับ ส่วนความเข้มข้นสูงสุดของไุ่นละอองรวมและฝุ่นขนาดไม่เกิน 10 ไมครอน มีค่าเฉลี่ย 24 ชั่วโมง อยู่ในช่วง $78-143$ ไมโครกรัมต่อลูกบาศก์เมตร และ $32-80$ ไมโครกรัมต่อ ลูกบาศก์เมตร ตามลำดับ (ตารางที่ 6.4-5)

ตารางที่ 6.4-5
ผลการตรวจวัดคุณภาพอากาศบริเวณสโมสรบ้านโพลาด ระหว่างวันที่ 31 มีนาคม-3 เมษายน 2554

สถานีตรวจวัด	ความเข้มข้น (ไมโครกรัม/ ลูกบาศก์เมตร)					
	$\begin{gathered} \text { TSP } \\ \text { เฉลี่ย } 24 \\ \text { ชั่วโมง } \end{gathered}$	$\begin{gathered} \text { PM-10 } \\ \text { เฉลี่ย } 24 \\ \text { ชั่วโมง } \end{gathered}$	NO_{2} เฉลี่ย 1 ชั่วโมง	CO เฉลี่ย 1 ชั่วโมง	SO_{2} เฉลี่ย 1 ชั่วโมง	SO_{2} เฉลี่ย 24 ชั่วโมง
สโมสรบ้านโพลาด	78-143	32-80	$\begin{aligned} & 29.35- \\ & 62.84 \end{aligned}$	$\begin{aligned} & 458.08- \\ & 687.12 \end{aligned}$	6.02-6.81	5.50-6.02
ร้อยละของค่า มาตรฐาน	$\begin{aligned} & 23.64- \\ & 43.33 \end{aligned}$	26.67-66.67	9.17-19.64	1.34-2.00	0.77-0.87	1.83-2.01
มาตรฐาน ${ }^{1}$	330	120	320	34,200	780	300

หมายเหตุ: ' มาตรฐานคุณภาพอากาศในบรรยากาศของประเทศ สปป.ลาว
ที่มา: รวบรวมและประมวลผลข้อมูลโดย บริษัท ทีม คอนซัลติ้ง เอนจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด, เมษายน 2554

6.4.2 เสียง

(1) วิธีกรศึกษา

สำรวจภาคสนามเพื่อทำการตรวจวัดระดับเสียงบริเวณพื้นที่อ่อนไหวต่อผลกระทบ (Sensitive Receptor) ในพื้นที่ชึกษา บริเวณ โรงเรียนบ้านนาปุง ระหว่างวันที่ $24-28$ มีนาคม 2554 และบริเวมสโมสรบ้าน โพลาด ระหว่างวันที่ 31 มีนาคม-3 เมษายน 2554 (รูปที่ 6.4-2)

โดยตรวจวัดค่า Leq เฉลี่ย 24 ชั่วโมง ค่า L_{90} แเละค่า $\mathrm{L}_{\max }$ และบันทึกค่าระดับเสียงงป็นเวลา 3 วัน ต่อเนื่อง
(2) ผลการศึกษา

ผลการตรวจวัดค่าระดับเสียง Leq เฉลี่ย 24 ชั่วโมง ณ บริเวณโรงเรียนบ้านนาปุงและส โมสรบ้าน โพลาด พบว่ามีค่าอยู่ในเกณฑ์มาตรฐานที่ประเทศ สปป.ลาว กำหนด โดยค่าระดับเสียงสูงสุดที่ตรวจวัดได้คิด เป็นร้อยละ 84.43 และ 73.00 ของมาตรฐูานตามลำดับ (ตารางที่ 6.4-6)

สถานีตรวจวัด	วันที่ตรวจวัด	Leq 24 ชั่วโมง $\mathrm{dB}(\mathrm{~A})$	$\begin{gathered} \mathrm{L}_{90} \\ \mathrm{~dB}(\mathrm{~A}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{\max } \\ \mathrm{dB}(\mathrm{~A}) \end{gathered}$
โรงเรียนบ้านนาปุง	24-25/03/11	59.1	48.5	90.3
	25-26/03/11	51.1	40.0	85.8
	27-28/03/11	54.6	42.7	92.6
	Min-Max	51.1-59.1	40.0-48.5	85.8-92.6
	ร้อยละของค่า มาตรฐาน	73.00-84.43	-	74.61-80.52
สโมสรบ้านโพลาด	31/03/11-1/04/11	51.1	48.1	90.4
	1-2/04/11	50.7	47.4	99.9
	2-3/04/11	50.0	47.7	91.6
	Min-Max	50.0-51.1	47.4-48.1	90.4-99.9
	$\begin{gathered} \text { ร้อยละของค่า } \\ \text { มาตรฐาน } \end{gathered}$	71.43-73.00	-	78.61-86.87
มาตรฐาน ${ }^{1}$		70	-	115

หมายเหตุ: ${ }^{1}$ มาตรฐานคุณภาพอากาศในบรรยากาศของประเทศ สปป.ลาว
ที่มา : รวบรวมและประมวลผลข้อมูลโดย บริษัท ทีม คอนซัลติ้ง เอนจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด, เมษายน 2554
(1) วิธีการศึกษา

สำรวจภาคสนามเพื่อทำการตรวจวัดความสั่นสะเทือนบริเวณพื้นที่อ่อนไหวต่อผลกระทบในพื้นที่ ศึกษาเช่นเดียวกับการตรวจวัดระดับเสียง ได้แก่ บริเวณโรงเรียนบ้านนาปุง ระหว่างวันที่ $24-28$ มีนาคม 2554 และบริเวณสโมสรบ้าน โพลาด ระหว่างวันที่ 31 มีนาคม-3 เมษายน 2554 (รูปที่ 6.4-2) โดยตรวจวัดและบันทึก ค่าความสั่นสะเทือนในรูปแบบของความเร็วอนุภาค (มิลลิเมตรต่อวินาที) และความถี่ (เฮิร์ตซ์)
(2) ผลการศึกษา

สถานีที่ 1 (V1) โรงเรียนบ้านนาปุง
ความสั่นสะเทือนที่ตรวจวัดได้มีค่าความเร็วอนุภาคสูงสุดอยู่ไม่เกิน 1.00 มิลลิเมตร/วินาที โดยไม่ สามารถระบุความถี่และระยะการขจัดที่เกิดขึ้นได้ดังตารางที่ 6.4-7 เมื่อเปรียบเทียบกับเกณฑ์เสนอแนะของ Whiffin และ Leonard (ตารางที่ 6.4-8) และ DIN 4150 (ตารางที่ 6.4-9) พบว่ามีผลกระทบอยู่ในระดับที่บุคคล แทบจะไม่รู้สึกถึงแรงสั่นสะเทือน และไม่มีผลกระทบต่อโครงสร้างอาคารที่สามารถรับแรงสั่นสะเทือนได้น้อย

สถานีที่ $2(\mathrm{~V} 2)$ สโมสรบ้านโพลาด

ความสั่นสะเทือนที่ตรวจวัดได้มีค่าความเร็วอนุภาคสูงสุดอยู่ไม่เกิน 1.00 มิลลิเมตร/วินาที โดยไม่ สามารถระบุความถี่และระขะการขจัดที่เกิดขึ้นได้ดังตารางที่ 6.4-7 เมื่อเปรียบเทียบกับเกณฑ์เสนอแนะของ Whiffin และ Leonard (ตารางที่ 6.4-8) และ DIN 4150 (ตารางที่ 6.4-9) พบว่ามีผลกระทบอยู่ในระดับที่บุคคล แทบจะไม่รู้สึกถึงแรงสั่นสะเทือน และไม่มีผลกระทบต่อโครงสร้างอาคารที่สามารถรับแรงสั่นสะเทือนได้น้อย

ตารางที่ 6.4-7 ผลการตรวจวัดความสั่นสะเทือนบริเวณพื้นที่ศึกษา

สถานี	วันที่ตรวจวัด	เวลาที่วัด ความ สั่นสะเทือน ได้สูงสุด	ความเร็ว อนุภาคสูงสุดที่ แกนใดๆ (มิลลิเมตร/ วินาที)	ความถี่ (Hz)	แหล่งกำเนิด ความ สั่นสะเทือน
1. สโมสรบ้านโพ ลาด (V1)	$\begin{gathered} 31 \text { มี.ค.-1 เม.ย. } \\ 2554 \\ 1-2 \text { เม.ย. } 2554 \\ 2-3 \text { เม.ย. } 2554 \end{gathered}$		$\begin{aligned} & <1.00 \\ & <1.00 \\ & <1.00 \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	
2. โรงเรียนบ้านนา ปุง (V2)	$24-25$ มี.ค. 2554 25-26 มี.ค. 2554 25-26 มี.8. 2554		$\begin{aligned} & <1.00 \\ & <1.00 \\ & <1.00 \end{aligned}$	N/A N/A N/A	

หมายเหตุ: N/A ไม่สามารถระบุความถี่และระยะการขจัดที่เกิดขึ้นได้ (Not Available)
ที่มา: รวบรวมและประมวลผลข้อมูล โดย บริษัท ทีม คอนซัลติ้ง เอนจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด, พฤษภาคม 2554

ความเร็วอนุภาคสูงสุด มม./วินาที (นิ้ว/วินาที)	ผลกระทบต่อมนุษย์	ผลกระทบต่อโครงสร้างอาคาร
$\begin{aligned} & 0 \text { ถึง } 0.15 \\ & (0-0.006) \end{aligned}$	ไม่สามารถรับความรู้สึกได้	ไม่ส่งผลกระทบ/ความเสียหายต่อโครงสร้างทุก ประเภท
$\begin{gathered} 0.15 \text { ถึง } 0.3 \\ (0.006-0.012) \end{gathered}$	ระดับที่เป็นไปได้ที่จะรับรู้	ไม่ส่งผลกระทบ/ความเสียหายต่อโครงสร้างทุก ประเภท
$\begin{gathered} 2.0 \\ (0.079) \end{gathered}$	รู้สึกได้ถึงความสั่นสะเทือน	ระดับที่สูงขึ้นของความสั่นสะเทือนจะส่งผลต่อ การทำลายหรือสร้างความเสียหายต่อ โบราณสถาน
$\begin{gathered} 2.5 \\ (0.098) \end{gathered}$	ถ้าความสั่นสะเทือนเป็นไปอย่าง ต่อเนื่อง จะสร้างความรู้สึกรำคาญ	ไม่เสี่ยงต่อความเสียหายที่จะเกิดขึ้นกับอาคาร ทั่วไป หรือโครงสร้างทางสถาปัตยกรรม
$\begin{gathered} 5 \\ (0.197) \end{gathered}$	ความสั่นสะเทือนรบกวนต่อคนที่ อาศัยอยู่ในอาคาร (สอดคล้องกับ ระดับที่ส่งผลกระทบต่อคนที่อยู่บน สะพาน และได้รับในช่วงเวลาสั้นๆ)	ระดับที่จะส่งผลทำให้เกิดความเสียหายต่อ โครงสร้างทางสถาปัตยกรรม บ้านเรือนทั่วไปที่มี ผนังและเพดานเป็นแบบ Plaster (ส่วนผสมที่มีปูน ทราย น้ำ และใยต่างๆ) ในกรณีที่เป็นผนังฝ้า เพดาน แบบยืดหยุ่นจะได้รับความเสียหายเล็กน้อย
$\begin{gathered} 10-15 \\ (0.394-0.591) \end{gathered}$	คนจะรู้สึกไม่พอใจ ถ้าเกิด แรงสั่นสะเทือนอย่างต่อเนื่อง และคน ที่เดินบนสะพานจะไม่สามารถยอมรับ ได้	ระดับความสั่นสะเทือนที่สูงกว่าการจราจรปกติ ซึ่งจะก่อให้เกิดความเสียหายต่อโครงสร้างทาง สถาปัตยกรรมและสร้างความเสียหายต่อ โครงสร้างบ้างเล็กน้อย

ที่มา: Whiffin, A.C., and Leonard, D.R., A Survey of Traffic Induced Vibration, Eng., 1971.
ตารางที่ $6.4-9$ มาตรฐานระดับความสั่นสะเทือนของDIN 4150 สำหรับความสั่นสะเทือนที่ก่อให้เกิดผลกระทบต่อสิ่งปลูกสร้าง

ค่าความเร็วอนุภาคสูงสุด		ผลกระทบต่อสิ่งปลูกสร้าง
มิลลิเมตร	นิ้ว/วินาที	
2	0.075	ไม่มีผลกระทบใดๆ ต่ออาคารเก่าแก่
5	0.197	เริ่มทำลาย โครงสร้างทางสถาบัตยกรรม
10	0.394	เกิดความเสียหายต่อโครงสร้าง
50	1.968	เกิดความเสียหายต่อกำแพง

6.4.4 คุณภาพน้ำผิวดิน
(1) วิธีการศึกษา

คณะผู้ศึกษาได้สำรวจสภาพปัจจุบันของคุณภาพน้ำผิวดินในแหล่งน้ำผิวดินใกล้เคียงพื้นที่ ก่อสร้างของโครงการจำนวน 2 สถานี (รูปที่ 6.4-4) เมื่อวันที่ 22 มีนาคม 2554 ดังนี้

สถานีที่ 1 (W1) : น้ำแก่น บ้านนาปุง เมืองหงสา แขวงไซยะบุรี $(752000 \mathrm{E}, 2180000 \mathrm{~N})$
สถานีที่ 2 (W2) : ห้วยแอ่น เมืองจอมเพชร แขวงหลวงพระบาง $(800428 \mathrm{E}, 2191143 \mathrm{~N})$
การเก็บตัวอย่างน้ำผิวดินในแต่ละสถานีเก็บแบบผสมผสาน (Integrated Samples) โดยใช้ กระบอกเก็บตัวอย่าง (Water Sampler) เก็บตัวอย่างน้ำตามดัชนีคุณภาพน้ำ ตัวอย่างน้ำที่ได้นำมาหาค่าดัชนี คุณภาพน้ำผิวดินต่างๆ และวิเคราะห์ตัวอย่างน้ำโดยใช้วิธี Standard Methods of Examination of Water and Wastewater $21^{\text {th }}$ ซึ่ง APHA, AWWA และ WPCF ร่วมกันกำหนด สำหรับดัชนีคุณภาพน้ำบางปัจจัยได้ ดำเนินการวิเคราะห์ในภาคสนามทันที (Insitu) ส่วนที่ไม่สามารถทำการวิเคราะห์ได้จะทำการเก็บตัวอย่างเพื่อ ส่งวิเคราะห์ (Exsitu) ในห้องปฏิบัติการของบริษัท วิศวกรรมธรณีและฐานราก จำกัด และบริษัท เอส.พี. เอส.คอนซัลติ้ง เซอร์วิส จำกัด ดังแสดงในตารางที่ $6.4-10$ จากนั้นนำผลการวิเคราะห์คุณภาพน้ำผิวดินใน ปัจจุบัน ณ แต่ละสถานีมาเปรียบเทียบกับมาตรฐานคุณภาพน้ำในแหล่งน้ำผิวดิน ตามประกาศของมาตรฐาน สิ่งแวดล้อมแห่งชาติ, สาธารณรัฐประชาธิปไตยประชาชนลาว เพื่อเป็นการตรวจสอบว่าคุณภาพน้ำในแต่ละ สถานีจัดอยู่ในค่ามาตรฐานหรือไม่ รวมทั้งหาแนวทางป้องกันและลดผลกระทบที่อาจก่อให้เกิดการ เปลี่ยนแปลงคุณภาพน้ำต่อไป

ตารางที่ 6.4-10 ดัชนีคุณภาพน้ำผิวดินและวิธีวิเคราะห์

คุณลักษณะ	ดัชนีตรวจวัดคุณภาพน้ำผิวดิน	วิธีการวิเคราะห์
1. ทาง กายภาพ	1.1 ความลึก (Depth) 1.2 อุณหภูมิน้ำ (Temperature) ${ }^{1 /}$ 1.3 ความโปร่งแสง (Transparency) 1.4 ค่าความนำไฟฟ้า (Conductivity) " 1.5 ความขุ่น (Turbidity) ${ }^{1 /}$ 1.6 ความเร็วกระแสน้ำ (Current Velocity)	Meter Stick Thermometer Secchi Disc Conductivity Meter Turbidimetric Method Flow Meter
2. ทางเคมี	2.1 ความเป็นกรด-ด่าง $(\mathrm{pH})^{1 /}$ 2.2 ออกซิเจนละลายน้ำ (Dissolved Oxygen) ${ }^{1 /}$ 2.3 ความต้องการออกซิเจนทางชีวเคมี (BOD) ${ }^{1 /}$ 2.4 ของแข็งแขวนลอย (Suspend Solids : SS) ${ }^{1 /}$ 2.5 น้ำมันและไขมัน (Oil \& Grease) ${ }^{3 /}$	pH Meter Dissolved Oxygen Meter 5 days BOD test Dried at $103-105^{\circ} \mathrm{C}$ Soxhlet Extraction Method
3. ทางชีวภาพ	3.1 แบคทีเรียกลุ่มโคลิฟอร์มทั้งหมด ${ }^{2}$ 3.2 แบคทีเรียกลุ่มฟีคอลโคลิฟอร์ม ${ }^{2 /}$	Standard Total Coliform Fermentation Technique Fecal Coliform Procedure
4. โลหะหนัก	4.1 ตะกั่ว $(\mathrm{Pb})^{1 /}$	Inductively Coupled Plasma

หมายเหตุ: $1 /$ เก็บตัวอย่างน้ำที่ระดับกึ่งกลางความลึกของน้ำ
2 เเก็บตัวอย่างน้ำที่ระดับต่ำจากผิวน้ำประมาณ 30 เซนติเมตร
3 / เก็บตัวอย่างที่ระดับผิวน้ำ
(2) ผลการศึกษา

ผลการตรวจวิเคราะห์คุณภาพน้ำผิวดินในแหล่งน้ำผิวดินใกล้เคียงพื้นที่ก่อสร้าง เมื่อวันที่ 22 มีนาคม 2554 จำนวนทั้งสิ้น 2 สถานี พบว่าดัชนีคุณภาพน้ำบัจจุบันของทั้งสองสถานีส่วนใหญ่อยู่ในเกณฑ์ มาตรฐาน ยกเว้น ปริมาณออกซิเจนละลายในสถานีที่ 1 และปริมาณ บีโอดี ของทั้งสองสถานี มีค่าต่ำกว่า มาตรฐานคุณภาพน้ำผิวดิน (2009) ดังตารางที่ 6.4-11

ตารางที่ $6.4-11$ ผลการสำรวจคุณภาพน้ำผิวดิน เดือนมีนาคม พ.ศ. 2554

ดัชนีคุณภาพน้ำ ${ }^{1 /}$	หน่วย	สถานี		เกณฑ์มาตรฐาน คุณภาพน้ำผิวดิน
		$\begin{gathered} \text { W1 } \\ \text { Nam Kean } \end{gathered}$	W2 Houy Ann	
1.1. สี กลิ่น และรส 1.2 น้ำมันหรือไขมันบนผิวน้ำ 1.3 อุณหภูมิน้ำ 1.4 ความลึก 1.5 ความโปร่งใส 1.6 ค่าการนำไฟฟ้า 1.7 ความเค็ม	๑เซลเซียส ม. ม. ไมโคร โมห์/ซม. สนพ.	ไม่พบ ไม่พบ 19.0 0.3 0.3 321.0 0.0	ไม่พบ ไม่พบ 25.0 0.7 0.7 405.0 0.0	- - - - - - -
2.1 ความเป็นกรดและด่าง 2.2 ออกซิเจนละลาย 2.3 บีโอดี 2.4 ของแข็งแขวนลอย 2.5 น้ำมันและไขมัน	มก./ล. มก./ล. มก./ล. มก./ล.	8.2 5.3 1.8 22.5 <5.0	8.7 6.6 1.6 7.3 <5.0	$5.0-9.0$ ≥ 6.0 ≤ 1.5 - -
3.1 แบคทีเรียกลุ่มฟีคอลโคลิฟอร์ม 3.2 แบคทีเรียกลุ่ม โคลิฟอร์มทั้งหมด	เอ็มพีเอน $/ 100$ มล. เอ็มพีเอน/100 มล.	$\begin{array}{r} 930.0 \\ 4300.0 \end{array}$	$\begin{array}{r} 240.0 \\ 2800.0 \end{array}$	$\leq 5,000$
4.1 ตะกั่ว	มก./ล.	<0.005	<0.005	≤ 0.05

ที่มา: ${ }^{1}$ The Surface Water Quality, National Environmental Measures, Laos 2009.

สำหรับผลตรวจวัดคุณภาพน้ำในแต่ละสถานี สรูปได้ดังนี้
(ก) สถานีที่ 1 : น้ำแก่น บ้านนาปุง เมืองหงสา แขวงไซยะบูรี $(752000 \mathrm{E}, 2180000 \mathrm{~N})$

สภาพทั่วไป : บริเวณจุดเก็บตัวอย่างอยู่ใกล้กับแนวเส้นทาง โครงการในช่วงแรกมาก ที่สุด ความลึกเฉลี่ยบริเวณจุดเก็บตัวอย่าง 0.32 เมตร น้ำมีสีน้ำตาล ค่อนข้างใส ไม่มีกลิ่น มีความเร็วกระแสน้ำ 5 เมตร/นาที พื้นที่ริมสองฝั่งน้ำบริเวณจุดเก็บตัวอย่างน้ำ โดยทั่วไปเป็นป่าไผ่ ไร่ยาสูบ และสวนผัก มีระดับความ สูงของตลิ่ง 0.6 เมตร

การใช้ประโยชน์ : มีการใช้น้ำจากน้ำแก่นบริเวณที่เก็บตัวอย่างเพื่อการเกษตรกรรมและ น้ำใช้ภายในที่พักที่อยู่ใกล้เคียง

ผลวิเคราะห์คุณภาพน้ำ : จากการสำรวจ ดังรูปที่ $6.4-5$ พบว่าคุณภาพน้ำจัดอยู่ในเกณฑ์ ปกติ ความลึกของน้ำมีค่า 0.32 เมตร มีอุณหภูมิเท่ากับ 19.0 องศาเซลเซียส ความเป็นกรด-ด่างมีค่าเท่ากับ 8.16 ความโปร่งใสมีค่า 0.32 เมตร ค่าความนำไฟฟ้ามีค่า 321 ไม โคร โมห์/เซนติเมตร ปริมาณออกซิเจนละลายมีค่า 5.29 มิลลิกรัมต่อลิตร บีโอดีมีค่า 1.8 มิลลิกรัมต่อลิตร สารแขวนลอยทั้งหมดมีค่า 22.5 มิลลิกรัมต่อลิตร สำหรับ ปริมาณ โลหะหนักพบตะกั่ว <0.005 มิลลิกรัมต่อลิตร สำหรับปริมาณแบคทีเรียคลุ่มฟีคอลโคลิฟอร์ม มีการ ปนเปื้อนเพียงเล็กน้อย โดยมีค่าเท่ากับ 930 เอ็มพีเอ็น/ 100 มิลลิลิตร และพบแบคทีเรียกลุ่มโคลิฟอร์มทั้งหมดมี ค่าเท่ากับ 4,300 เอ็มพีเอ็น $/ 100$ มิลลิลิตร ลักษณะดินตะกอนเป็นดินปนกรวด เมื่อเปรียบเทียบกับมาตรฐาน คุณภาพน้ำผิวตามข้อตกลงว่าด้วยมาตรฐานสิ่งแวดล้อมแห่งชาติ สปป.ลาว ปี ค.ศ. 2009 พบว่าคุณภาพน้ำใน สถานีมีค่าต่ำกว่าที่กำหนดไว้ โดยเฉพาะปริมาณออกซิเจนละลาย และปริมาณ บีโอดี ในน้ำ ทั้งนี้อาจเป็นผลของ น้ำทิ้งจากแหล่งชุมชน หรือกิจกรรมการเกษตร การทับถมกันของซากพืชในแหล่งน้ำที่เกิดขึ้นจากการปลูกพืช ไร่ และสวนผักในบริเวณใกล้เคียง
(ข) สถานีที่ 2 : ห้วยแอ่น เมืองจอมเพชร แขวงหลวงพระบาง $(800428 \mathrm{E}, 2191143 \mathrm{~N})$
สภาพทั่วไป จุดเก็บตัวอย่างอยู่ในบริเวณช่วงกลางของโครงการ ความลึกเฉลี่ยบริเวณ จุดเก็บตัวอย่าง 0.65 เมตร น้ำมีสีน้ำตาล ค่อนข้างใส ไม่มีกลิ่น มีความเร็วกระแสน้ำ 5 เมตร/นาที สำหรับพื้นที่ ริมสองฝั่งห้วยบริเวณจุดเก็บตัวอย่างน้ำ โดยทั่วไปเป็นที่อยู่อาศัยของชาวบ้าน

การใช้ประโยชน์ : มีการใช้น้ำจากห้วยบริเวณนี้เพื่อการเกษตรกรรมและอุปโภคของ ประชาชนในบริเวณใกล้เคียงห้วย

ผลวิเคราะห์คุณภาพน้ำ : จากการสำรวจดังรูปที่ 6.4-6 พบว่าคุณภาพน้ำจัดอยู่ในเกณฑ์ ปกติ ความลึกของน้ำมีค่า 0.65 เมตร มีอุณหภูมิเท่ากับ 25.0 องศาเซลเซียส ความเป็นกรด-ค่างมีค่าเท่ากับ 8.72 ความโปร่งใสมีค่า 0.65 เมตร ค่าความนำไฟฟ้ามีค่า 405 ไมโคร โมห์/เซนติเมตร ปริมาณออกซิเจนละลายมีค่า 6.61 มิลลิกรัมต่อลิตร บีโอดีมีค่า 1.6 มิลลิกรัมต่อลิตร สารแขวนลอยทั้งหมดมีค่า 7.3 มิลลิกรัมต่อลิตร สำหรับ ปริมาณ โลหะหนักพบตะกั่ว <0.005 มิลลิกรัมต่อลิตร สำหรับปริมาณแบคทีเรียกลุ่มฟีคอลโคลิฟอร์ม มีการ ปนเปื้อนเท่ากับ 240 เอ็มพีเอ็น $/ 100$ มิลลิลิตร และพบแบคทีเรียกลุ่มโคลิฟอร์มทั้งหมดมีค่าเท่ากับ 2,800 เอ็มพี เอ็น $/ 100$ มิลลิลิตร ลักษณะดินตะกอนเป็นดินทรายปนกรวด เมื่อเปรียบเทียบกับมาตรฐานคุณภาพน้ำผิวตาม ข้อตกลงว่าด้วยมาตรฐานสิ่งแวดล้อมแห่งชาติ สปป.ลาว ปี ค.ศ. 2009 พบว่าคุณภาพน้ำในสถานีมีค่าต่ำกว่าที่ กำหนดไว้ โดยเฉพาะปริมาณ บีโอดี ในน้ำ ทั้งนี้อาจเป็นผลของน้ำทิ้งจากแหล่งชุมชนในบริเวณใกล้เคียง

6.4.5 ดินและการกัดเซาะ

การศึกษาผลกระทบจากการกัดเซาะของชั้นดิน จำเป็นอย่างยิ่งที่ต้องศึกษาถึงชนิดและคุณสมบัติ ของดิน โดยเฉพาะองค์ประกอบที่มีผลต่อการกัดเซาะ เพื่อประเมินผลกระทบจากการพัฒนาโครงการก่อสร้าง ถนนเชื่อมต่อบ้านนาปุง เมืองหงสากับบ้านเชียงแมน ที่มีระยะทางรวม 111.5 กิโลเมตร ที่มีต่อสภาพชั้นดินและ การเร่งการกัดเซาะของชั้นดิน รวมทั้งการกำหนดมาตรการในการป้องกันผลกระทบที่อาจเกิดขึ้นจากการ พัฒนานั้นๆ
(1) วิธีการศึกษา

ใช้ข้อมูลชั้นดินจากแผนที่ดินที่จัดทำโดย National Agricultural and Forestry Research Institue (NAFRI), ระวางเมืองหงสาและระวางเมืองจอมเพชร ซึ่งจัดทำในมาตราส่วน $1: 200,000$ เป็นข้อมูลพื้นฐาน (รูป ที่ 6.4-7) และทำการประเมินอัตราการกัดเซาะของดิน โดยใช้คุณสมบัติเบื้องต้นของชุดดินแต่ละชุดที่พบใน บริเวณต่างๆ ซึ่งจะดำเนินการประเมินใน 2 กรณี คือ กรณีปัจจุบันที่ยังไม่มีโครงการ กับกรณีที่มีการพัฒนาของ โครงการ และหากมีผลกระทบที่มีนัยยะเกิดขึ้น จะกำหนดมาตรการการควบคุมและแก้ไขผลกระทบนั้น
(2) ผลการศึกษา

2.1) ชนิดและลักษณะของดิน

จากการทบทวนข้อมูลชุดดินที่ปรากฎในพื้นที่โครงการตามข้อมูลในแผนที่ที่กล่าวในข้อ 2 พบว่า ประกอบด้วยดินทั้งหมด 5 ชุดหลัก โดยที่มีดิน 2 ชุดที่ครอบคลุมพื้นที่โครงการมากกว่า 90% ของพื้นที่ โครงการ ดังนี้

ชูดที่ 1 : ดินชุด ACRISOLS

ชุดดินชุดนี้พบเป็นบริเวณกว้างทางทิศตะวันตกทั้งหมดของพื้นที่โครงการ โดยพบตั้งแต่บริเวณ บ้านนาปุงไปจนถึงบริเวณบ้านห้วยทรายขาว ดินชุดนี้เกิดจากการผุพังของหินอัคนีเป็นหลัก โดยมีเนื้อหยาบ มากจนถึงปานกลาง (Medium to coarse Texture) มีอัตราการซึมผ่านของน้ำสูง และมีลักษณะเป็นกรด มีแร่ธาตุ ที่มีประโยชน์ต่อการเพาะปลูกพืชต่ำ ชูดดินย่อยของดินชุดนี้ที่พบเป็นชุดย่อย ที่เรียกว่า Ferric ACRISOLS

ชูดที่ 2 : ดินชุด ALISOLS
ชุดดินชุดนี้พบเป็นบริเวณกว้างทางทิศตะวันออกทั้งหมดของพื้นที่โครงการ โดยพบตั้งแต่บ้านห้วย ทรายขาว ไปจนถึงบ้านปากลึง ดินชุดนี้มีลักษณะเป็นดินกรดที่มีดินเหนียวเกิดสะสมอยู่ส่วนล่าง โดยหินแม่ของ ดินชุดนี้จะเป็นหินที่มีแร่จำพวกอลูมิเนียมที่มีไม่เสถียร (Unstable aluminum-bearing minerals) โดยดินชุดนี้ไม่ เหมาะต่อการเพาะปลูกยกเว้นพืชที่ชอบดินกรด

ชุดดินชุดนี้ประกอบด้วยชุดดินย่อยที่พบในพื้นที่โครงการ 2 ชุดย่อย คือ Ferric ALISOLS และ Haplic ALISOLS โดยที่ชุดดินย่อยประเภทหลักจะพบครอบคลุมพื้นที่มากกว่า

ชุดที่ 3 : ดินชุด LUVISOLS

ชุดดินชุดนี้พบครอบคลุมพื้นที่ประมาณ 5% ของพื้นที่โครงการ โดยจะพบทางทิศตะวันออกและ ตะวันออกเฉียงใต้ของ บ้านนาปุง โดยหินแม่ของดินชุดนี้จะมีความหลากหลาย และมีลักษณะเป็นวัสดุที่มีเนื้อที่ จับตัวไม่แน่น (Unconsolidated Materials) ดินชุดนี้จะพบในบริเวณที่เป็นที่ราบและเนินที่มีความลาดเอียงต่ำ โดยที่ดินชุดนี้มีความเหมาะสมต่อการเพาะปลูกเนื่องจากร่วนซุย น้ำซึมผ่านได้ดี และมีแร่ธาตุ

ชุดดินชุดนี้ประกอบด้วยชุดดินย่อยที่พบในพื้นที่โครงการ 2 ชุดย่อย คือ Gleyic LUVISOLS และ Ferric LUVISOLS โดยที่ชุดดินย่อยประเภทหลังจะพบตามแนวถนนจากบ้านนาปุง มาบ้านปากห้วยยาง

ชุดที่ 4 : ดินชุด CAMBISOLS

ชุดดินชุดนี้พบครอบคลุมพื้นที่เพียงส่วนน้อยของพื้นที่โครงการ โดยดินชุดนี้จะเกิดจากการสะสม ตัวของแร่ธาตุที่มีขนาดเม็ดเล็กจนถึงปานกลาง (Fine to medium materials) ในบริเวณที่เป็นที่ราบริมแม่น้ำและ ที่ราบเชิงเขา ดินชนิดนี้จึงมีคุณสมบัติเหมาะสมต่อการเพาะปลูก โดยมีคุณสมบัติเป็นกลางหรือเป็นกรดอ่อนๆ และมีแร่ธาตุที่เป็นประโยชน์ต่อพืชปานกลาง ชุดดินชุดนี้ประกอบด้วยชุดดินย่อยที่พบในพื้นที่โครงการเพียง 1 ชุดย่อย คือ Eutric CAMBISOLS

ชูดที่ 5 : ดินชูด LIXISOLS

ชุดดินชุดนี้พบครอบคลุมพื้นที่เพียงส่วนน้อยของพื้นที่โครงการ หินแม่ของดินชุดนี้จะเป็นหินที่ ลักษณะเป็นวัสดุที่มีเนื้อที่จับตัวไม่แน่น(Unconsolidated Materials) โดยดินชุดนี้จะมีอัตราการผุพังและถูกกัด เซาะสูง ชั้นดินเหนียวจะถูกชะล้างออกไป ในพื้นที่ที่ชั้นดินถูกเปิดออกและอยู่สภาพที่ไม่เสถียรดินชุดนี้จะถูก กัดเซาะในอัตราที่สูงมาก ชุดดินชุดนี้ประกอบด้วยชุดดินย่อยที่พบในพื้นที่โครงการเพียง 1 ชุดย่อย คือ Haplic LIXISOLS

2.2) แนวโน้มของการกัดเซาะของชุดดินในพื้นที่โครงการ

จากผลการวิเคราะห์เบื้องต้นของชุดดินและคุณสมบัติ พบว่าชุดดินทั้งสองชุดหลัก ที่พบครอบคลุม พื้นที่มากที่สุด 2 ชุด คือ Ferric ACRISOLS และ Haplic ALISOLS มีคุณสมบัติของการถูกกัดเซาะ (Soil Erodibility Factor) อยู่ในเกณฑ์ต่ำ ถึงปานกลาง ดังนั้นอัตราการถูกกัดเซาะของดินโดยทั่วไปจึงอยู่ในเกณฑ์ต่ำ อย่างไรก็ตามหากมีการเปลี่ยนสภาวะแวดล้อมอื่นๆจากการพัฒนาโครงการไม่ว่าจะเป็นการเปิดหน้าดินโดยเอา ต้นไม้ที่ปกคลุมดินออก หรือการปรับมุมลาดเอียงของสภาพพื้นที่ อาจส่งผลถึงอัตราการกัดเซาะที่สูงขึ้น

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบื้องตัน
โครงการพัฒนาถนนจากเมืองหงสา-ข้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประซาชนลาว (สปป.ลาว)

(1) วิธีการศึกษา

สำรวจสภาพปัจุุบันของนิเวศวิทยาทางน้ำในแหล่งน้ำผิวดินใกล้เคียงพื้นที่ก่อสร้างของโครงการ โดยดำเนินการเก็บตัวอย่างแพลงก์ตอนและสัตว์หน้าดิน เมื่อวันที่ 23 กันยายน 2553 จำนวน 2 สถานี ซึ่งเป็น สถานีเดียวกับสถานีเก็บตัวอย่างคุณภาพน้ำผิวดิน (รูปที่ 6.4-4) ดังนี้ สถานีที่ $1(\mathrm{~W} 1)$: น้ำแก่น บ้านนาปุง เมืองหงสา แขวงไซยะบุรี ($752000 \mathrm{E}, 2180000 \mathrm{~N}$) สถานีที่ 2 (W2) : ห้วยแอ่น เมืองออมเพชร แขวงหลวงพระบาง $(800428 \mathrm{E}, 2191143 \mathrm{~N})$
สำหรับการเก็บตัวอย่างแพลงก์ตอนและสัตว์หน้าดิน มีรายละเอียดดังนี้
การเก็บตัวอย่างแพลงก์ตอน ใช้วิธีตักน้ำจากผิวน้ำ (ลึกประมาณ $0-30$ เซนติเมตร) จำนวน 20 ลิตร กรองด้วยถุงแพลงก์ตอนขนาดตา 60 ไมครอน นำตัวอย่างที่รวบรวมได้รักษาในขวดเก็บรักษาตัวอย่างดองด้วย น้ำยาฟอร์มาลินเข้มข้น 5% นำกลับไปวิเคราะห์ชนิดและตรวจนับปริมาณที่ห้องปฏิบัติการ ณ มหาวิทยาลัยเกษตรศาสตร์ (รูปที่ 6.4-8)

(ก) กิจกรรมการเก็บตัวอย่างแพลงก์ตอน

(ข) กิจกรรมการเก็บตัวอย่างสัตว์หน้าดิน
รูปที่ 6.4-8: กิจกรรมการเก็บตัวอย่างแพลงก์ตอนและสัตว์หน้าดิน ในแหล่งน้ำผิวดินใกล้เคียงพื้นที่ก่อสร้าง

ความหนาแน่นของแพลงก์ตอนพืชและสัตว์รายงานเป็นเซลล์ต่อลูกบาศก์เมตร และการวิเคราะห์ ชนิดอิงเอกสารของลัดดา (2542), Smith (1950), Mizuno (1969), Carr and Whitton (1973) และ Bold and Wynne (1978)

หลังจากดำเนินการวิเคราะห์ชนิดและประเมินความหนาแน่นของแพลงก์ตอนของแต่ละสถานีแล้ว จะประเมินความหลากหลายทางชีวภาพ (Species Diversity index) จากสูตรดังนี้

$$
H^{\prime}=\quad-\sum_{i=1}^{s}\left(n_{i} / n\right) \ln \left(n_{i} / n\right)(\text { Shannon and Weaver, 1963) }
$$

เมื่อ $\mathrm{H}^{\prime}=$ ดัชนีความหลากหลาย
$s=$ จำนวนชนิดของแพลงก์ตอน
$\mathrm{n}=$ จำนวนแพลงก์ตอนทั้งหมด
$n_{i}=$ จำนวนแพลงก์ตอนแต่ละชนิด
ความหลากหลายทางชีวภาพที่ได้จะบ่งชี้ถึงคุณภาพน้ำได้ตาม Wilhm and Dorris (1968) ดังนี้

$$
\begin{aligned}
& \mathrm{H}^{\prime}<1.0 \text { คุณภาพน้ำต่ำ ไม่ค่อยเหมาะสมต่อการอยู่อาศัยของสิ่งมีชีวิตในน้ำ } \\
& \mathrm{H}^{\prime}=1.0-3.0 \text { คุณภาพน้ำพอใช้ สำหรับการดำรงชีวิตของสิ่งมีชีวิตในน้ำได้ } \\
& \mathrm{H}^{\prime}>3.0 \text { คุณภาพน้ำดี เหมาะสมต่อการดำรงชีวิตของสิ่งมีชีวิตในน้ำ }
\end{aligned}
$$

การเก็บตัวอย่างสัตว์หน้าดิน ใช้ Ekman Dredge (พื้นที่ 0.25 ตารางฟุต) ทำการเก็บตัวอย่างสถานีละ 2 ซ้ำ (รวม 0.50 ตารางฟุต) นำตัวอย่างที่ตักได้ไส่ตะแกรงร่อนที่มีขนาดตา 450 และ 850 ไมครอน เลือกเศษวัสดุ ที่ไม่ต้องการทิ้ง แยกเก็บส่วนที่ร่อนได้ใส่ขวดเก็บตัวอย่างดองรักษาด้วยน้ำยาฟอร์มาลินเข้มข้น 7% นำกลับไป เลือกแยกวิเคราะห์ชนิด และนับจำนวนที่ห้องปฏิบัติการ ณ มหาวิทยาลัยเกษตรศาสตร์ (รูปที่ 6.4-8)

ความชุกชุมของสัตว์หน้าดินจากตัวอย่างตะกอนดินจะคำนวณในหน่วยตัว/ตารางเมตร และการ วิเคราะห์ชนิดสัตว์หน้าดินจากเอกสารของประจวบ (2525), สุภาวดี (2525), เสาวภา (2528), Brinkhurst (1971), Brandt (1974), Merritt and Cummins (1984), และ Williams and Felmate (1992)
(2) ผลการศึกษา

จากการสำรวจด้านนิเวศวิทยาทางน้ำ ได้แก่ แพลงก์ตอน และสัตว์หน้าดิน ในแหล่งน้ำผิวดิน ใกล้เคียงพื้นที่ก่อสร้าง เมื่อวันที่ 22 มีนาคม 2554 จำนวน 2 แห่ง ในสถานีที่ 1 พบชนิดของแพลงก์ตอนพืช 20

ชนิด ความหนาแน่น $1,168,200$ เซลล์/ลูกบาศก์เมตร และพบแพลงก์ตอนสัตว์ 5 ชนิด ความหนานแน่น 70,800 เซลล์/ลูกบาศก์เมตร ในสถานีที่ 2 พบแพลงก์ตอนพืช 21 ชนิด ความหนานแน่น $1,914,000$ เซลล์/ลูกบาศก์เมตร และพบแพลงก์ตอนสัตว์ 5 ชนิด ความหนานแน่น 79,200 เซลล์/ลูกบาศก์เมตร โดยในแหล่งน้ำทั้ง 2 แห่ง พบดิ วิชั่น Chromophyta (ไดอะตอม) เป็นแพลงก์ตอนพืชกลุ่มเด่นทั้งปริมาณและชนิด สำหรับแพลงก์ตอนสัตว์พบ พวกโปร โตรซัวเป็นกลุ่มเด่น มีค่าดัชนีความหลากหลายทางชีวภาพของแพลงก์ตอน $2.08-2.15$ ส่วนสัตว์หน้า ดินพบ 3 ไฟลัม คือ ไฟลัม Annelida (พวกไส้เดือนน้ำจืด) ไฟลัม Arthropoda (พวกตัวอ่อนริ้นน้ำจืด) และไฟลัม Mollusca พวกหอยฝาเดียว ได้แก่ หอยขม หอยทราย และหอยกาบน้ำจืด ความชุกชุมที่พบอยู่ระหว่าง $88-704$ ตัว/ตารางเมตร ซึ่งกลุ่มสัตว์หน้าดินที่พบเหล่านี้ บ่งชี้ว่าสภาพแหล่งน้ำผิวดินใกล้เคียงพื้นที่ก่อสร้าง มีสภาพน้ำ ไหลไม่แรง และมีสารอินทรีย์ตามพื้นท้องน้ำ โดยมีรายละเอียดของแพลงก์ตอนและสัตว์หน้าดินที่สำรวจพบใน แต่ละสถานี (ตารางที่ 6.4-12 และตารางที่ 6.4-13) ดังนี้
(ก) สถานีที่ 1 (SW1) : น้ำแก่น บ้านนาปุง เมืองหงสา แขวงไซยะบุรี $(752000 \mathrm{E}, 2180000 \mathrm{~N})$
จำนวนแพลงก์ตอนที่พบทั้งสิ้น 25 ชนิด ความหนาแน่นทั้งหมด $1,239,000$ เซลล์/ลูกบาศก์เมตร พบแพลงก์ตอนพืช 20 ชนิด ใน 3 ดิวิชั่น ได้แก่ ดิวิชั่น Cyanophyta (สาหร่ายสีเขียวแกมน้ำเงิน) Chlorophyta (สาหร่ายสีเขียวและยูกลีนอยด์) และ Chromophyta (ไดโนแฟลกเจลเลตและไดอะตอม) จำนวน 2,5 และ 13 ชนิด ตามลำดับ ความหนาแน่นแพลงก์ตอนพืช $1,168,200$ เซลล์/ลูกบาศก์เมตร ชนิดที่พบมากที่สุดคือ Synedra ulna ในดิวิชั่น Chromophyta และพบแพลงก์ตอนสัตว์ 5 ชนิด จาก 3 ไฟลัม ได้แก่ ไฟลัม Arthropoda (อาร์โธ พอด) Porotozoa (โปรโตซัว) และ Rotifera (โรติเฟอร์) จำนวน 2,2 และ 1 ชนิด ตามลำดับ ความหนาแน่น แพลงก์ตอนสัตว์ 70,800 เซลล์/ลูกบาศก์เมตร ชนิดที่พบมากที่สุด ได้แก่ Tintinnidium sp. สัดส่วนระหว่าง แพลงก์ตอนพืชกับแพลงก์ตอนสัตว์เท่ากับ 16.50 และมีค่าดัชนีความหลากหลายทางชีวภาพของแพลงก์ตอน เท่ากับ 2.15 แสดงว่าคุณภาพน้ำพอใช้ สำหรับการดำรงชีวิตของสิ่งมีชีวิตในน้ำ (ตารางที่ 6.4-12)

สัตว์หน้าดินพบ 3 ไฟลัม มีปริมาณรวม 704 ตัว/ตารางเมตร ได้แก่ ไฟลัม Annelida ในครอบครัว Tubificidae (พวกไส้เดือนน้ำจืด) ปริมาณ 176 ตัว/ตารางเมตร และไฟลัม Arthropoda พวกตัวอ่อนริ้นน้ำจืดใน ครอบครัว Chironomidae ปริมาณ 484 ตัว/ตารางเมตร และครอบครัว Gomphidae (ตัวอ่อนแมลงปอ) มีอินทรีย์ สารที่เน่าเปื่อยอยู่สูงเนื่องจากพบตัวอ่อนริ้นน้ำจืด ซึ่งเป็นพวกที่กินอินทรีย์ที่เน่าเปื่อยอยู่เป็นจำนวนมาก สอดคล้องกับสภาพแวดล้อมของแหล่งน้ำ ที่พบการสะสมเศษซากสารอินทรีย์จากการเกษตรกรรมบริเวณรอบๆ แหล่งน้ำ
(ข) สถานีที่ 2 : ห้วยแอ่น เมืองจอมเพชร แขวงหลวงพระบาง $(800428 \mathrm{E}, 2191143 \mathrm{~N})$ จำนวนแพลงก์ตอนที่พบทั้งสิ้น 26 ชนิด ความหนาแน่นทั้งหมด $1,993,200$ เซลล์/ลูกบาศก์เมตร พบแพลงก์ตอนพืช 21 ชนิด ใน 3 ดิวิชั่น ได้แก่ ดิวิชั่น Cyanophyta (สาหร่ายสีเขียวแกมน้ำเงิน) Chlorophyta (สาหร่ายสีเขียวและยูกลืนอยด์) และ Chromophyta (ไดโนแฟลกเจลเลตและไดอะตอม) จำนวน 1,6 และ 14

ชนิด ตามลำดับ ความหนาแน่นแพลงก์ตอนพืช $1,914,000$ เซลล์ลูกบาศก์เมตร ชนิดที่พบมากที่สุด Synedra ulna ในดิวิชั่น Chromophyta และพบแพลงก์ตอนสัตว์ 5 ชนิด จาก 3 ไฟลัม ได้แก่ ไฟลัม Porotozoa (โปร โัต ซัว) และ Rotifera (โรติเฟอร์) จำนวน 4 ,และ 1 ชนิด ตามลำดับ ความหนาแน่นแพลงก์ตอนสัตว์ 79,200 เซลล์/ ลูกบาศก์เมตรชนิดที่พบมากที่สุด ได้แก่ Halteria sp. ในไฟลัม Protozoa สัดส่วนระหว่างแพลงก์ตอนพืชกับ แพลงก์ตอนสัตว์เท่ากับ 24.17 และมีค่าดัชนีความหลากหลายทางชีวภาพของแพลงก์ตอน เท่ากับ 2.08 แสดงว่า คุณภาพน้ำพอใช้ สำหรับการดำรงชีวิตของสิ่งมีชีวิตในน้ำ (ตารางที่ 6.4-12)

สัตว์หน้าดินพบไฟลัม Arthropoda ในครอบครัว Chironomidae (พวกตัวอ่อนริ้นน้ำจืด) ปริมาณ 66 ตัว/ตารางเมตร และพบไฟลัม Mollusca ในครอบครัว Thiaridae (หอยขึ้นก) (ตารางที่ 6.4-13) ซึ่งพวกตัวอ่อน ริ้นน้ำจืดใช้เป็นเครื่องบ่งชี้ถึงคุณภาพน้ำที่มีปริมาณสารอินทรีย์อยู่สูง ทั้งนี้อาจเนื่องจากบริเวณนี้ได้รับตะกอน ดินและอินทรียสารจากพื้นที่เกษตรกรรมในบริเวณใกล้เคียง

ตารางที่ 6.4-12

ชนิดและปริมาณแพลงก์ตอนที่สำรวจพบในแหล่งน้ำผิวดินใกล้เกียงพื้นที่ก่อสร้าง เมื่อวันที่ 22 มี.ค 2554

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว) ตารางที่ 6.4-12 (ต่อ)

ปริมาณแพลงก์ตอน (เซลล์ / ลบ.ม.)

Phylum Arthropoda
Subclass Copepoda
*Nauplius stage
Order Cyclopoida
*Cyclopoids copepods
Phylum Protozoa (Protozoans)
Tintinnidium sp .
Arcella megastoma
Centropyxis ecornis
Diffugia corona

Euglypha filifera Halteria sp. Phylum Rotifera (Rotifers) Pompholyx complanata Trichocerca pusilla	11,800	$\begin{aligned} & 13,200 \\ & 26,400 \\ & 13,200 \end{aligned}$
จำนวนชนิดแพลงก์ตอนสัตว์รวม	5	5
ปริมาณแพลงก์ตอนสัตว์รวม	70,800	79,200
จำนวนชนิดแพลงก์ตอนรวม ปริมาณแพลงก์รอมทั้งหมด สัดส่วนระหว่างแพลงก์ตอนพิชกับแพลงก์ตอนสัตว์ ดัชนีความหลากทลายทางชีวภาพ	$\begin{gathered} 25 \\ 1,239,000 \\ 16.50 \\ 2.15 \end{gathered}$	$\begin{gathered} 26 \\ 1,993,200 \\ 24.17 \\ 2.08 \end{gathered}$

หมายเหตุ :- ไม่พบ
ที่มา: การสำรวจภาคสนามโดย บริษัท ทีม คอนซัลติ้ง เอนจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด, มีนาคม 2554

กลุ่ม / ชนิดของสัตว์หน้าดิน	สถานี	
	น้ำแก่น บ้านนาบูง เมืองหงสา แขวง ไซยะบุรี (SW1)	ห้วยแอ่น เมืองจอม เพชร แขวงหลวง พระบาง (SW2)
PHYLUM ANNELIDA Class Oligochaeta (ไส้เดือนน้ำจีด) Family Tubificidae PHYLUM ARTHROPODA Class Insecta Order Diptera Family Chironomidae (ตัวอ่อนริ้นน้ำจืด) Order Odonata (ตัวอ่อนแมลงปอ) Family Gomphidae PHYLUM MOLLUSCA Class Gastropoda (หอยฝาเดียว) Order Mesogastropoda Family Thiaridae (หอยขี้นก) Thiara sp. Order Basommatophora Family Lymnaeidae Lymnaea sp.	176 484 22 22	66 22
จำนวนชนิดสัตว์หน้าดินรวม	4	2
ปริมาณสัตว์หน้าดินรวม (ตัวต่อตารางเมตร)	704	88

หมายเหตุ :- ไม่พบ

ที่มา : การสำรวจภาคสนามโดย บริษัท ทีม คอนซัลติ้ง เอนจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด, มีนาคม

6.4.7
 นิเวศวิทยาทางบก

6.4.7.1 ทรัพยากรป่าไม้
(1) วิธีการศึกษา
(1) รวบรวมศึกษาข้อมูลจากเอกสารและรายงานต่างๆ ทางด้านทรัพยากรป่าไม้จากกรมกสิกรรม และป่าไม้ สปป.ลาวและหน่วยงานที่เกี่ยวข้อง
(2) ศึกษาจากแผนที่มาตราส่วน $1: 100,000$
(3) สำรวจภาคสนามบริเวณพื้นที่โครงการและใกล้เคียง ในกรณีที่มีสังคมพืชป่าไม้จะ ดำเนินการสำรวจ โดยการวางแปลงสุ่มตัวอย่าง โดยประยุกต์ใช้วิธีวางแปลงสุ่มตัวอย่างแบบ Stratified Sampling Technique ดังนี้
(ค) ข้อมูลที่ทำการศึกษาประกอบด้วย

- การกระจาขของป่าแต่ละประเภท (Forest type) ตามแนวพื้นที่โครงการ
- ชนิดพรรณไม้ของกลุ่มสังคมพืชป่าไม้ไนป่าแต่ละประเภท
- ความหนาแน่นของพรรณไม้ (Density)
- ดัชนีความสำคัญทางนิเวศวิทยาของพรรณไม้แต่ละชนิด (Important Value Index, IVI)
- ความหลากหลายของชนิดพรรณไม้ (Species diversity)
- ปริมาตรไม้ (Volume)
(ข) การวางแปลงตัวอย่าง

ขนาดของแปลงตัวอย่างใช้แปลงตัวอย่างชั่วคราว (Temporary Sampling Plots) เป็นรูปวงกลม ซ้อนทับกัน (Concentric Sample Plot) 3 วง แบ่งออกได้ตามลักษณะของพรรณไม้ 3 ขนาด (รูปที่ $6.4-9$) ดังนี้

รูปที่ 6.4-9 : แปลงตัวอย่างทีใช้ในการสำรวจทรัพยากรป่าไม้

- แปลงตัวอย่างวงกลมขนาดรัศมี 17.85 เมตร (พื้นที่ 0.1 เฮกตาร์) ทำการบันทึกชนิดพรรณไม้ ของไม้ไหญ่ (Trees) ที่มีขนาดเส้นรอบวงที่ระดับความสูงเพียงอก (GBH : Girth at Breast High) มากกว่า 30 เซนติเมตร บันทึกขนาดเส้นรอบวง (GBH) ขนาดความสูง (Height) และ ตรวจสอบคุณภาพของต้นไม้ที่สามารถใช้ทำเป็นสินค้าได้(จำนวนท่อน, \log)
- แปลงตัวอย่างวงกลมขนาดรัศมี 12.62 เมตร (พื้นที่ 0.05 เซกตาร์) วางซ้้นทับตรงกลางแปลง ตัวอย่างวงกลม บันทึกชนิดพรรมไม้ของไม้หนุ่มหรือลูกไม้ (Saplings) ที่มีขนาคเส้นรอบวง ที่ระดับความสูงเพียงอกต่ำกว่า 30 เซนติเมตร (GBH) และมีความสูงมากกว่า 1.30 เมตร วัด และบันทึกขนาคเส้นรอบวง ความสูง และจำนวน
- แปลงตัวอย่างวงกลมขนาดรัศมี 5.64 เมตร (พื้นที่ 0.01 เฮกแตร์) วางซ้อนทับตรงกลางแปลง ตัวอย่างวงกลมขนาดรัศมี 12.62 เมตร บันทึกชนิดพรรณไม้และจำนวนของกล้าไม้ (Seedlings) ที่มีขนาดความสูงน้อยกว่า 1.30 เมตร ตลอคจนไม้พื้นล่างชนิดต่าง ๆ (Undergrowth) ที่สำรวจพบในแเปลงตัวอย่าง
(ค) การวิเคราะห์ข้อมูลด้านนิเวศวิทยา
ใช้ค่าดัชนีความสำคัญของพรรณ ไม้ (IVI) ในการบรรยายลักษณะทางนิเวศวิทยาของแต่ละชนิดป่า ความสัมพันธ์ของไม้แต่ละชั้น และความต่อเนื่องของธรรมชาติ โดยทำการวิเคราะห์ในเชิงปริมาณของ องค์ประกอบของพรรณไม้ในสังคมพืช ซึ่งมีค่าต่าง ๆ ดังนี้
- ความถี่ของพรรณไม้ (Species Frequency) เป็นค่าที่ชี้การกระจายของพรรณไม้และชนิดใน พื้นที่นั้น ซึ่งมักจะบอกค่าของความถี่เป็นเปอร์เซ็นต์ ดังนี้ ความถี่ $(\%)=$ (จำนวนแปลงตัวอย่างที่มีพืชชนิดนั้นปรากฎอยู่ / จำนวนแปลงงตัวอย่างทั้งหมด) x 100 ความถี่สัมพัทธ์ (Relative Frequency) $\%=\frac{\text { ความถี่ของไม้แต่ละชนิด }}{\text { ผลรวมความถี่ของไม้ทุกชนิดในสังคม }} \times 100$
- ความหนาแน่นของพรรณไม้ (Density) คือ จำนวนของพรรณไม้ชนิดใดชนิดหนึ่งต่อหน่วย เนื้อที่ ซึ่งหาได้จาก

ความหนาแน่น
จำนวนต้นไม้ชนิดนั้นทั้งหมด
จำนวนแปลงสุ่มตัวอย่างทั้งหมด x ขนาดของแปลงสุ่มตัวอย่าง

ความหนาแน่นสัมพันธ์ $=\frac{\text { ความหนาแน่นของพรรมไม้ }}{\text { ความหนาแน่นของพืชทุกชนิด }} \times 100$

- ความเด่นของพรรณไม้ (Species Dominance) เป็นค่าที่ชี้ให้เห็นว่าพรรณไม้ชนิดนั้นมี อิทธิพลต่อสังคมพืชที่ขึ้นอยู่มากน้อยเพียงใด พรรณไม้ที่มีความเด่นมากเป็นพรรณไม้ที่มี อิทธิพลต่อพื้นที่นั้นมาก ความเด่นของพรรณไม้สามารถบอกได้ในรูปของการปกคลุม หมายถึง เนื้อที่ของพื้นที่ที่ถูกปกคลุม โดยเรือนยอดหรือส่วนที่อยู่เหนือพื้นดินของพื่ โดย พื้นที่หน้าตัด (Basal Area) เป็นค่าที่ชี้ถึงความเด่นชัดของพรรณไม้ได้ เนื่องจากพื้นที่หน้าตัด ย่อมสัมพันธ์กับขนาดของเรือนยอด โดยหาได้จากสูตร เปอร์เซนต์พื้นที่หน้าตัดของพรรณไม้ชนิดนั้น $=$ \qquad ผลรวมของพื้นที่หน้าตัดของพรรณไม้ชนิดนั้น ผลรวมของพื้นที่หน้าตัดของพรรณไม้ทุกชนิด และความเด่นของพรรณไม้ สามารถบอกได้ในรูปของความเด่นสัมพัทธ์ (Relative Dominance) คือ ความเค่นสัมพันธ์ $(\%)=\frac{\text { เปอร์เซนต์พื้นที่หน้าตัดของพรรณไม้ชนิดนั้น }}{\text { ผลรวมของเปอร์เซนต์พื้นที่หน้าตัดของพรรณไม้ทุกชนิด }} \times 100$
- ดัชนีความสำคัญ (Important Value Index : IVI) เป็นการรวมค่าความสัมพันธ์ ความ หนาแน่นสัมพัทธ์ และความเค่นสัมพัทธ์ เป็นค่าที่ใช้แสดงถึงความสำเร็จทางนิเวศวิทยาของ พรรณไม้ในการครอบครองพื้นที่นั้น ซึ่งค่าดัชนีความสำคัญของพืชชนิดหนึ่งจะมีค่าตั้งแต่ 0 300 ในกรณีหาค่าดัชนีของกล้าไม้ ซึ่งไม่สามารถหาค่าพื้นที่หน้าตัด ได้ ให้หาดัชนี

ความสำคัญได้จากผลรวมของความถี่สัมพัทธ์ และความหนาแน่นสัมพัทธ์เท่านั้น และมีค่า ตั้งแต่ 0-200

- ความหลากหลายของชนิดพันธู่ (Species Diversity) เป็นปริมาณคว่มมากน้อยของสิ่งมีชีวิต ซึ่งอาศัขอยู่ในระบบนิเวศหนึ่ง การหาความหลากหลายของชนิดพันธุ์โดยการนับจำนวน ต้นไม้แต่ละชนิดแล้วคำนวณหาค่าดัชนีความหลากหลายต่าง ๆ ในที่นี้จะคำนวณ โดยวิธีการ ของ Shannon-Wiener Index (H) หรือ Shannon's Index (Shannon และ Weaver, 1949) โดย ใช้ในรูปของ \log ฐาน 2 ดังนี้ $\mathrm{H}(\mathrm{s})=\sum_{\mathrm{i}=1}^{\mathrm{S}}\left(\mathrm{Pilog}_{2} \mathrm{Pi}\right)$

โดย $\mathrm{Pi}=$ สัดส่วนระหว่างจำนวนต้นไม้ของพันธุ์ไม้ (i) ต่อจำนวนต้น ของพรรณไม้ทั้งหมด

$$
s=\text { จำนวนพรรณไม้ทั้งหมด }
$$

- การวิเคราะห์ปริมาตรไม้ โดยใช้ตารางปริมาตรไม้ของไม้แต่ละชนิด และตารางปริมาตรไม้ อื่นๆ โดยมีสูตรในการคำนวณปริมาตรไม้ดังนี้

$$
\begin{aligned}
\mathrm{V} & =0.00007875 \times \mathrm{H} \times(\mathrm{G} / 2) 2 \\
\text { เมื่อ } \mathrm{V} & =\text { ปริมาตร (ลูกบาศก์เมตร) } \\
\mathrm{H} & =\text { ความสูงของต้นไม้ทั้งหมด (เมตร) } \\
\mathrm{G} & =\text { เส้นผ่าศูนย์กลางที่ความสูงเพียงอก (เซนติเมตร) }
\end{aligned}
$$

(2) ผลการศึกษา

จากการสำรวจนิเวศวิทยาทางบกระหว่างวันที่ $23-30$ มีนาคม 2554 ตลอดแนวเส้นทาง โครงการ ซึ่ง มีขอบเขตการศึกษาข้างละ 10 เมตรจากจุดกึ่งกลางถนน พื้นที่ตลอดแนวถนนเส้นทางส่วนใหญ่ถูกปกคลุมด้วย ป่าไม้หรือพื้นที่ที่ยังคงมีสภาพสังคมพืชขนาดใหญ่อยู่เป็นจำนวนมาก ได้แก่ ป่าป้องกันและป่าฟื้นฟูของเมือง เขตน้ำแก่น ป่าผลิตแห่งชาติปากห้วยยาง ป่าป้องกันแห่งชาติพูเมี่ยง และป่าผลิตแห่งชาติพูหลวงใต้ ตามลำดับ ดังแสดงใน (รูปที่ 6.4-10)

สภาพแวดล้อมตลอดแนวถนนของพื้นที่โครงการมีการใช้ประโยชน์ที่ดินเช่น ป่าไม้ พื้นที่ เกษตรกรรม ชุมชน พื้นที่รกร้างว่างเปล่า สวนป่า และพื้นที่อื่นๆ ดังนั้นคณะผู้ศึกษาจึงได้วางแปลงสำรวจ ทรัพยากรป่าไม้ จำนวน 51 แปลงตัวอย่าง (รูปที่ 6.4-11) โดยให้ครอบคลุมพื้นที่ป่าไม้ในพื้นที่โครงการเพื่อศึกษา ลักษณะทั่วไปของสภาพนิเวศน์ของพื้นที่ศึกษา โดยบันทึกพรรณไม้ชนิดที่พบเห็น ในพื้นที่มีสภาพนิเวศน์ที่ แตกต่างกันในพื้นที่โครงการและพื้นที่ใกล้เคียง
(ข) สภาพป่าไม้

สภาพป่าไม้ตามแนวเส้นทางโครงการปัจจุบันเป็นพื้นที่ป่าไม้ที่สมบูรณ์ สามารถจำแนกประเภทป่า ออกได้เป็น 4 ประเภท ได้แก่ ป่าดิบเขาซึ่งพบมากที่สุดในพื้นที่ โครงการ อยู่สูงจากระดับน้ำทะเลปานกลางตั้งแต่ 1,000 เมตร รองลงมาเป็นป่าเต็งรัง อยู่สูงจากระดับน้ำทะเลปานกลางตั้งแต่ $300-1,000$ เมตร ป่าเบญจพรรณ อยู่สูง จากระดับน้ำทะเลปานกลาง $300-500$ เมตร และป่าดิบแล้ง อยู่สูงจากระดับน้ำทะเลปานกลาง $200-400$ เมตร ดัง แสดงใน (รูปที่ 6.4-12) ส่วนพื้นที่เกษตรกรรมใช้ประโยชน์ในการปลูกข้าวไร่ นาข้าว ข้าวโพด สวนสัก สวนไม้ กฤษณา สวนยางพารา และชุมชน กระจายอยู่ตลอดแนวถนนของโครงการ จากการสำรวจพบว่า มีพรรณไม้รวมอย่าง น้อย 311 ชนิด แสดงดัง (รูปที่ 6.4-13) โดยจำแนกตามประเภทป่าได้ดังนี้

ป่าดิบเขา สามารถพบได้บนภูเขาที่มีความสูงชัน มีความชื้นในบรรยากาศสูง พรรณไม้เด่นที่พบส่วน ใหญู่อยู่ในวงศ์ Fagaceae, Theaceae, Rubiaceae and Euphorbiaceae เช่น ก่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) ก่อเดือย (Castanopsis acuminatissima (Blume) A. DC.) ทะ โล้ (Schima wallichii (DC.) Korth.) แข้งกวาง (Wendlandia tinctoria (Roxb.) DC.) เหมือดโลด (Aporosa villosa (Wall. ex Lindl.) Baill.) และชนิดพันธุ์อื่นๆ

ป่าเต็งรัง สามารถพบได้ตามสันเขาที่มีลักษณะเป็นดินลูกรัง พรรณไม้เด่นที่พบส่วนใหญ่อยู่ในวงศ์ Dipterocarpaceae, Rubiaceae, Burseraceae and Guttiferae เช่น รัง (Shorea siamensis Miq.) คำมอกหลวง (Gardenia sootepensis Hutch.) มะกอกเกลื้อน (Canarium subulatum Guillaumin) ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) และชนิดพันธุ์อื่นๆ ป่าเต็งรังมักพบตามแนวเขตทางซึ่งมีสภาพเสื่อม โทรม เนื่องจากมีการตัดไม้เพื่อทำไร่เลื่อนลอย

ป่าเบญจพรรณ สามารถพบได้ในระดับความสูงจากระดับน้ำทะเลที่ต่ำกว่าป่าเต็งรังลงมา มีลักษณะไม่ สูงชัน ทำให้ถูกรบกวนจากการทำไร่เลื่อนลอยจนพื้นที่บางแห่งกลายเป็นป่ารุ่นที่สอง พรรณไม้เด่นที่พบส่วนใหญ่ อยู่ในวงศ์ Leguminosae, Tiliaceae, Sapindaceae and Burseraceae เช่น ประดู่ป่า (Pterocarpus macrocarpus Kurz) เสี้ยวดอกขาว (Bauhinia variegata L.) ทองหลางป่า (Erythrina subumbrans (Hassk.) Merr.) ปอลาย (Grewia eriocarpa Juss.) ตะคร้อ (Schleichela oleosa (Lour.) Oken) มะกอกเกลื้อน (Canarium subulatum Guillaumin) และชนิดพันธุ์อื่นๆ

ป่าดิบแล้ง พบกระจัดกระจายทั่วไปตามที่ราบ เชิงเขา ไหล่เขา และหุบเขาที่ชุ่มชื้นมีสภาพป่ามีเรือนยอด แน่นทึบ ป่าประเภทนี้พบได้น้อยในพื้นที่โครงการ พรรณไม้เด่นที่พบในป่าดิบแแล้งส่วนใหญ่อยู่ในวงศ์ Meliaceae, Sonneratiaceae, Ebenaceae and Moraceae เช่น ขมหิน (Chukrasia tabularis A. Juss.) ตาเสือ (Aphanamixis polystachya (Wall.) R. Parker) ลำพูป่า (Duabanga grandiflora (Roxb. Ex Dc.) Walp.) มะพลับดง (Diospyros pendula Hasselt ex Hassk.) กร่าง (Ficus altissima Blume) และชนิดพันธุ์อื่นๆ

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบิ้องต้น
โครงการพัฒนาดนนจากเมืองหงสา-ข้านเซียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4-12 : สภาพป่าไม้ตามแนวพื้นที่ศึกษาของโครงการ

- ถักษณะทางนิเวศวิทยาและความหนาแน่นของพรรณไม้

ผลจากการสำรวจและวิเคราะห์ข้อมูลด้านนิเวศวิทยาป่าไม้ ความหลากหลายทางชีวภาพสามารถ บรรยายลักษณะต่างๆ ได้ดังนี้
(1) ป่าดิบเขา พบว่ามีพรรณไม้ที่เจริญเติบโตกระจายอยู่ในบริเวณนี้ทั้งสิ้นอย่างน้อย 267 ชนิด จากการวิเคราะห์ข้อมูลทางด้านนิเวศวิทยาป่าไม้โดยใช้ค่าความหนาแน่น และค่าดัชนีความสำคัญของ พรรณไม้ในการบรรยายลักษณะต่างๆ ในระดับของไม้ใหญ่ (Trees) พบว่ามีความหนาแน่นเฉลี่ยรวมเท่ากับ 202.00 ต้น/เฮกตาร์ ซึ่งจะสังเกตเห็นได้ว่ามีความหนาแน่นค่อนข้างสูง โดยพบว่าก่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) มีความหนาแน่นสูงสุดเท่ากับ 44.00 ต้น/เฮกตาร์ รองลงไป คือ ทะโล้
(Schima wallichii (DC.) Korth.) ก่อด่าง (Lithocarpus lindleyanus (Wall.) A. Camus) ก่อตาหมู (Lithocarpus thomsonii (Miq.) Rehder) และก่อแพะ (Quercus kerrii Craib) มีค่าความหนาแน่นเท่ากับ 29.00, 20.50, 15.00 และ 10.50 ต้น/เฮกตาร์ ตามลำดับ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวศวิทยาของไม้ใหญ่ พบว่า ก่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) มีค่าดัชนีความสำคัญทางนิเวศวิทยาสูงสุดเท่ากับ 63.85 แสดงให้เห็นว่าความสามารถในการครอบครองพื้นที่ของต้นก่อแป้นว่ามีสูง รองลงไป คือ ทะโล้ (Schima wallichii (DC.) Korth.) ก่อด่าง (Lithocarpus lindleyanus (Wall.) A. Camus) และก่อตาหมู (Lithocarpus thomsonii (Miq.) Rehder) มีค่าเท่ากับ $40.11,25.79$ และ 18.72 สำหรับดัชนีความหลากหลายของชนิดพันธุ์ พบว่ามีค่าเท่ากับ 3.01

ระดับลูกไม้ (Saplings) พบว่ามีความหนาแน่นโดยเฉลี่ยเท่ากับ 188.00 ต้น/เซกตาร์ โดยพบว่าทะโล้ (Schima wallichii (DC.) Korth.) มีค่าสูงสุดเท่ากับ 22.00 ต้น/เฮกตาร์ รองลงไป คือ แข้งกวาง (Wendlandia tinctoria (Roxb.) DC.) มีค่าความหนาแน่นเท่ากับ 19.00 ต้น/เสกตาร์ ส่วนมันปลา (Glochidion sphaerogynum (Mull.Arg.) Kurz) และก่อด่าง (Lithocarpus lindleyanus (Wall.) A. Camus) มีค่าความหนาแน่นเท่ากันคือ 13.00 ต้น/เฮกตาร์ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวควิทยาของลูกไม้พบว่าแข้งกวาง (Wendlandia tinctoria (Roxb.) DC.) มีค่าสูงสุดเท่ากับ 22.28 รองลงไป คือ ทะโล้ (Schima wallichii (DC.) Korth.) มีค่าเท่ากับ 21.27 โดย ที่มันปลา (Glochidion sphaerogynum (Mull.Arg.) Kurz) มีค่าเท่ากับ 14.74 เมื่อพิจารณาถึงดัชนีความ หลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 2.72

ระดับกล้าไม้ (Seedlings) พบว่ามีความหนาแน่นโดยเฉลี่ยเท่ากับ 1,770 ต้น/เยกตาร์ โดยพรรณไม้ ที่มีความหนาแน่นสูงสุด คือ ก่อด่าง (Lithocarpus lindleyanus (Wall.) A. Camus) มีค่าสูงสุดเท่ากับ 195.00 ต้น/เยกตาร์รองลงไป คือ ทะโล้ (Schima wallichii (DC.) Korth.) ก่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) และมันปลา (Glochidion sphaerogynum (Mull.Arg.) Kurz) มีค่าความหนาแน่นเท่ากับ $180.00,145.00$ และ 125.00 ต้น/เฮกตาร์ ตามลำดับ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวศวิทยาของกล้าไม้ พบว่าทะโล้ (Schima wallichii (DC.) Korth.) มีค่าสูงสุดเท่ากับ 16.95 รองลงไป คือ ก่อด่าง (Lithocarpus lindleyanus (Wall.) A. Camus) f่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) และมันปลา (Glochidion sphaerogynum (Mull.Arg.) Kurz) มีค่าเท่ากับ 16.10, 14.41 และ 13.28 ตามลำดับ สำหรับดัชนี ความหลากหลาขของชนิดพันธุ์พบว่ามีค่าเท่ากับ 3.65
(2) ป่าเต็งรัง พบว่ามีพรรณไม้ที่เจริญเติบโตกระจายอยู่ในบริเวณนี้ทั้งสิ้นอย่างน้อย 194 ชนิด จากการวิเคราะห์ข้อมูลทางด้านนิเวศวิทยาป่าไม้โดยใช้ค่าความหนาแน่น และค่าดัชนีความสำคัญของ พรรณไม้ในการบรรยายลักษณะต่างๆ ในระดับของไม้ไหญ่ (Trees) พบว่ามีความหนาแน่นเฉลี่ยรวมเท่ากับ 172.73 ต้น/เฮกตาร์ ซึ่งพบว่ารัง (Shorea siamensis Miq.) มีความหนาแน่นสูงสุดเท่ากับ 97.27 ต้น/เฮกตาร์ รอง ลงไป คือ เก็ดแดง (Dalbergia dongnaiensis Pierre) มะกอก (Spondias pinnata (L.f.) Kurz) และหว้า (Syzygium cumini (L.) Skeels) มีค่าความหนาแน่นเท่ากับ $7.27,5.45$ และ 4.55 ต้น/เฮกตาร์ เมื่อพิจารณาค่าดัชนี

ความสำคัญทางนิเวศวิทยาของไม้ไหญ่ พบว่า รัง (Shorea siamensis Miq.) มีค่าดัชนีความสำคัญทางนิเวศวิทยา สูงสุดเท่ากับ 137.97 แสดงให้เห็นว่าความสามารถในการครอบครองพื้นที่ของต้นรังว่ามีสูง รองลงไป คือ เก็ด แดง (Dalbergia dongnaiensis Pierre) ก่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) และหว้า (Syzygium cumini $(\mathrm{L}$.$) Skeels) มีค่าเท่ากับ 12.61,10.33$ และ 9.91 ตามลำดับ สำหรับดัชนีความหลากหลายของ ชนิดพันธุ์พบว่ามีค่าเท่ากับ 2.21

ระดับลูกไม้ (Saplings) พบว่ามีความหนาแน่นโดยเฉลี่ยเท่ากับ 163.64 ต้น/เซกตาร์ โดยพบว่ารัง (Shorea siamensis Miq.) มีค่าสูงสุดเท่ากับ 32.73 ต้น/เฮกตาร์ รองลงไป คือ ก่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) ก่อแพะ (Quercus kerrii Craib) และก้าว (Tristaniopsis burmanica (Griff.) Peter G. Wilson \& J.T. Waterh.) มีค่าความหนาแน่นเท่ากับ $16.36 \quad 14.55$ และ 9.09 ต้น/เยกตาร์ ตามลำดับ เมื่อพิจารณา ค่าดัชนีความสำคัญทางนิเวศวิทยาของลูกไม้พบว่ารัง (Shorea siamensis Miq.) มีค่าสูงสุดเท่ากับ 36.33 รองลง ไป คือ ก่อแพะ (Quercus kerrii Craib) ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) และก่อแป้น (Castanopsis diversifolia (Kurz) King et Hook.f.) มีค่าเท่ากับ 19.09, 17.05 และ 16.12 ตามลำดับ เมื่อพิจารณา ถึงดัชนีความหลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 1.91

ระดับกล้าไม้ (Seedlings) พบว่ามีความหนาแน่นโดยเฉลี่ยเท่ากับ 1,700 ต้น/เซกตาร์ โดยพรรณไม้ ที่มีความหนาแน่นสูงสุด คือ รัง (Shorea siamensis Miq.) มีค่าสูงสุดเท่ากับ 263.64 ต้น/เฮกตาร์ รองลงไป คือ ก่อแพะ (Quercus kerrii Craib) และก้าว (Tristaniopsis burmanica (Griff.) Peter G. Wilson \& J.T. Waterh.) มี ความหนาแน่นเท่ากันคือ 136.36 ต้น/เฮกตาร์ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวศวิทยาของกล้าไม้พบว่า รัง (Shorea siamensis Miq.) มีค่าสูงสุดเท่ากับ 22.25 รองลงไป คือ ก่อแพะ (Quercus kerrii Craib) มะม่วงหัว แมงวัน (Buchanania lanzan Spreng.) และก้าว (Tristaniopsis burmanica (Griff.) Peter G. Wilson \& J.T. Waterh.) มีค่าเท่ากับ $17.01,14.82$ และ 13.64 ตามลำดับ สำหรับดัชนีความหลากหลายของชนิดพันธุ์พบว่ามีค่า เท่ากับ 2.86
(3) ป่าเบญจพรรณ พบว่ามีพรรณไม้ที่เจริญเติบโตกระจายอยู่ในบริเวณนี้ทั้งสิ้นอย่างน้อย 263 ชนิด จากการวิเคราะห์ข้อมูลทางด้านนิเวศวิทยาป่าไม้โดยใช้ค่าความหนาแน่น และค่าดัชนีความสำคัญ ของพรรณไม้ไนการบรรยายลักษณะต่างๆ ในระดับของไม้ใหญ่ (Trees) พบว่ามีความหนาแน่นเฉลี่ยรวม เท่ากับ 215.00 ต้น/เสกตาร์ ซึ่งพบว่าเสี้ยวดอกขาว (Bauhinia variegata L.) มีความหนาแน่นสูงสุดเท่ากับ 25.00 ต้น/เซกตาร์ รองลงไป คือ ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) และเปล้าใหญ่ (Croton roxberghii N.P.Balakr.) มีค่าความหนาแน่นเท่ากันคือ 22.50 ต้น/เชกตาร์ เมื่อพิจารณาค่าดัชนี ความสำคัญทางนิเวศวิทยาของไม้ใหญ่่ พบว่า เสี้ยวดอกขาว (Bauhinia variegata L.) มีค่าดัชนีความสำคัญทาง นิเวศวิทยาสูงสุดเท่ากับ 29.65 แสดงให้เห็นว่าความสามารถในการครอบครองพื้นที่ของต้นเสี้ยวดอกขาว ว่ามี สูง รองลงไป คือ ทองหลางป่า (Erythrina subumbrans (Hassk.) Merr.) ปอลาย (Grewia eriocarpa Juss.) และ

ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) มีค่าเท่ากับ $25.74,23.15$ และ 21.75 ตามลำดับ สำหรับ ดัชนีความหลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 3.58

ระดับลูกไม้ (Saplings) พบว่ามีความหนาแน่นโดยเฉลี่ยเท่ากับ 245.00 ต้น/เฮกตาร์ โดยพบว่า เปล้าใหญ่ (Croton roxberghii N.P.Balakr.) มีค่าสูงสุดเท่ากับ 65.00 ต้น/เฮกตาร์ รองลงไป คือ เสี้ยวดอกขาว (Bauhinia variegata L.) ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) และปอลาย (Grewia eriocarpa Juss.) มีค่าความหนาแน่นเท่ากับ $50.00,40.00$ และ 25.00 ต้น/เฮกตาร์ ตามลำดับ เมื่อพิจารณาค่า ดัชนีความสำคัญทางนิเวศวิทยาของลูกไม้พบว่า เสี้ยวดอกขาว (Bauhinia variegata L.) มีค่าสูงสุดเท่ากับ 34.69 รองลงไป คือ เปล้าใหญ่ (Croton roxberghii N.P.Balakr.) ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) และปอลาย (Grewia eriocarpa Juss.) มีค่าเท่ากับ $31.29,30.61$ และ 24.49 ตามลำดับ เมื่อ พิจารณาถึงดัชนีความหลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 2.55

ระดับกล้าไม้ (Seedlings) พบว่ามีความหนาแน่นโดยเฉลี่ยเท่ากับ 2,550 ต้น/เฮกตาร์ โดยพรรณไม้ ที่มีความหนาแน่นสูงสุด คือ ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) มีค่าสูงสุดเท่ากับ 375.00 ต้น/เฮกตาร์ รองลงไป คือ เปล้าใหญ่ (Croton roxberghii N.P.Balakr.) มีความหนาแน่นเท่ากันคือ 250.00 ต้น/ เฮกตาร์ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวศวิทยาของลูกไม้พบว่า ติ้วเกลี้ยง (Cratoxylum cochinchinense (Lour.) Blume) มีค่าสูงสุดเท่ากับ 21.85 รองลงไป คือ เปล้าใหญ่ (Croton roxberghii N.P.Balakr.) มีค่าเท่ากับ 12.18 สำหรับดัชนีความหลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 3.68
(4) ป่าดิบแล้ง พบว่ามีพรรณไม้ที่เจริญเติบโตกระจายอยู่ในบริเวณนี้ทั้งสิ้นอย่างน้อย 155 ชนิด จากการวิเคราะห์ข้อมูลทางด้านนิเวศวิทยาป่าไม้โดยใช้ค่าความหนาแน่น และค่าดัชนีความสำคัญของ พรรณไม้ไนการบรรยายลักษณะต่างๆ ในระดับของไม้ใหญู่ (Trees) พบว่ามีความหนาแน่นเฉลี่ยรวมเท่ากับ 160.00 ต้น/เฮกตาร์ ซึ่งพบว่ายมหิน (Chukrasia tabularis A. Juss.) มีความหนาแน่นสูงสุดเท่ากับ 30.00 ต้น/ เฮกตาร์ รองลงไป คือ ลำพูป่า (Duabanga grandiflora (Roxb. Ex Dc.) Walp.) ตาเสือ (Aphanamixis polystachya (Wall.) R. Parker) และชุมแสง (Homalium dictyoneurum (Hance) Warb.) มีค่าความหนาแน่น เท่ากันคือ 20.00 ต้น/เฮกตาร์ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวศวิทยาของไม้ไหญ่ พบว่า กร่าง (Ficus. altissima Blume) มีค่าดัชนีความสำคัญทางนิเวศวิทยาสูงสุดเท่ากับ 48.44 แสดงให้เห็นว่าความสามารถในการ ครอบครองพื้นที่ของต้นกร่างว่ามีสูง รองลงไป คือ ยมหิน (Chukrasia tabularis A. Juss.) ลำพูป่า (Duabanga grandiflora (Roxb. Ex Dc.) Walp.) และตาเสือ (Aphanamixis polystachya (Wall.) R. Parker) มีค่าเท่ากับ $43.64,36.62$ และ 30.95 ตามลำดับ สำหรับดัชนีความหลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 3.32

ระดับลูกไม้ (Saplings) พบว่ามีความหนาแน่นโดยเฉลี่ยเท่ากับ 140.00 ต้น/เฮกตาร์ โดยพบว่า มะแฟน (Protium serratum (Wall. ex Cobbr.) Engl.) และยมหิน (Chukrasia tabularis A. Juss.) มีค่าสูงสุด เท่ากันคือ 40.00 ต้น/เฮกตาร์ รองลงไป คือ เขยตาย (Glycosmis pentaphylla (Retz.) DC.) แคฝอย
(Stereospermum fimbriatum (Wall. ex G.Don) A. DC.) และยมหอม (Toona ciliata M. Roem) มีค่าความ หนาแน่นเท่ากันคือ 20.00 ต้น/เฮกตาร์ ตามลำดับ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวศวิทยาของลูกไม้ พบว่ามะแฟน (Protium serratum (Wall. ex Cobbr.) Engl.) และยมหิน (Chukrasia tabularis A. Juss.) มี ค่าสูงสุดเท่ากันคือ 48.57 รองลงไป คือเขยตาย (Glycosmis pentaphylla (Retz.) DC.) แคฝอย (Stereospermum fimbriatum (Wall. ex G.Don) A. DC.) และยมหอม (Toona ciliata M. Roem) มีค่าเท่ากันคือ 34.29 เมื่อ พิจารณาถึงดัชนีความหลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 2.23

ระดับกล้าไม้ (Seedlings) พบว่ามีความหนาแน่น โดยเฉลี่ยเท่ากับ 800 ต้น/เฮกตาร์ โดยพรรณไม้ที่ มีความหนาแน่นสูงสุด คือ มะแฟน (Protium serratum (Wall. ex Cobbr.) Engl.) และยมหอม (Toona ciliata M. Roem) มีค่าสูงสุดเท่ากันคือ 200.00 ต้น/เฮกตาร์ รองลงไป คือช้าแป้น (Callicarpa arborea Roxb.) ตีนเป็ด (Alstonia angustiloba Miq.) และยมหิน (Chukrasia tabularis A. Juss.) มีความหนาแน่นเท่ากันคือ 100.00 ต้น/ เฮกตาร์ เมื่อพิจารณาค่าดัชนีความสำคัญทางนิเวศวิทยาของกล้าไม้พบว่ามะแฟน (Protium serratum (Wall. ex Cobbr.) Engl.) และยมหอม (Toona ciliata M. Roem) มีค่าสูงสุดเท่ากันคือ 41.67 รองลงไป คือ ช้าแป้น (Callicarpa arborea Roxb.) และตีนเป็ด (Alstonia angustiloba Miq.) มีค่าเท่ากันคือ 29.17 สำหรับดัชนีความ หลากหลายของชนิดพันธุ์พบว่ามีค่าเท่ากับ 2.50

รูปที่ 6.4-13 : พรรณไม้ที่สำรวจพบตามแนวเส้นทางโครงการ
6.4.7.2 ทรัพยากรสัตว์ป่า
(1) วิธีการศึกษา

ก. สำรวจและรวบรวมข้อมูลสัตว์ป่าใช้ 2 วิธี คือ วิธีการสำรวจด้วยการค้นหาโดยตรง (Direct Searching Method) และวิธีการสำรวจ โดยอ้อมจากการสอบถาม (Indirect Inquiring Method) โดยมีวิธี การศึกษาดังนี้

- การสำรวจโดยตรง ดำเนินการในพื้นที่กำหนดเป็นจุดสำรวจ ด้วยการเดินสำรวจในเวลา กลางวันให้ครอบคลุมพื้นที่ทั้งหมด บันทึกชนิดและความถี่ของการพบชนิดสัตว์ป่าที่พบเห็น ตัว หรือจากร่องรอยต่างๆ ที่สามารถระบุชนิดสัตว์ได้ อาทิ รอยตีน กองมูล คราบ ขน ไข่ รัง รู/โพรง ซาก และจากเสียงร้อง
- การสำรวจโดยอ้อม ด้วยการสอบถามโดยคัดเลือกชาวบ้านที่มีบ้านเรือนหรือมีที่ทำกิน อยู่ในพื้นที่บริเวณใกล้เคียงพื้นที่โครงการที่มีความรู้เกี่ยวกับชนิดสัตว์ป่า และช่วงเวลาที่สัตว์ ป่าเข้ามาใช้ประโยชน์ ซึ่งใช้เป็นข้อมูลเสริมของชนิดสัตว์ป์าที่ไม่พบจากการสำรวจ โดยตรง

ข. สถานภาพด้านการอนุรักษ์ คือ สัตว์ป่าตามการจัดสถานภาพการอนุรักษ์ ตามที่ IUCN (2008) ได้ระบุชนิดที่มีจำนวนประชากรลดน้อยลง และมีขอบเขตการแพร่กระจายแคบลงให้เป็นสัตว์ป่าถูกคุกคาม (Threatened animal) ซึ่งจำแนกเป็น 3 ระดับตามความรุนแรงของการถูกคุกคาม คือ

- ใกล้สูญพันธุ์ัั้นวิกฤติ (Critically endangered) คือ ชนิดสัตว์ป่าที่ประสบกับความ เสี่ยงที่สูงมากต่อการสูญพันธุ์ในธรรมชาติในอนาคตอันใกล้
- ใกล้สูญพันธู์ (Endangered) คือ ชนิดสัตว์ป่าที่ประสบกับความเสี่ยงต่อการสูญ พันโุ์ในธรรมชาติในอนาคต
- เสี่ยงต่อการสูญพันธุ์ (Vulnerable) คือ ชนิดสัตว์ป่าที่กำลังประสบกับความเสี่ยงต่อ การสูญพพันธุ์ในธรรมชาติในโอกาสข้างหน้า

นอกจากนั้น IUCN (2008) ได้ระบุชนิดสัตว์ป่าใกล้ถูกคุกคาม (near threatened) ที่ อาจถูกจัดเป็นสัตว์ป่าถูกคุกคามในระดับเสี่ยงต่อการสูญพพนธุ์ในโอกาสข้างหน้าไว้ด้วย

(2) ผลการศึกษา

(ก) จำนวนและชนิดพันรุ์

จากการสำรวจความหลากหลายของชนิดพันธุสัตว์ป์าตลอดแนวเส้นทางโครงการและพื้นที่ ใกล้เคียง ระหว่างวันที่ $22-30$ มีนาคม 2011 มีความหลากหลายของชนิดพันธุ์สัตว์ป์าที่อาศัยอยู่ในพื้นที่ศึกษา อย่างน้อย 220 ชนิด จาก 84 วงศ์ 30 อันดับ 165 สกุล จำแนกเป็นสัตว์เลี้ยงลูกด้วยนม (Mammal) 35 ชนิด นก (Bird) 134 ชนิด สัตว์เลื้อยคลาน (Reptile) 33 ชนิด และสัตว์สะเทินน้ำสะเทินบก (Amphibian) 18 ชนิด (ตารางที่ 6.4-14) ตัวอย่างสัตว์ป่าที่สำรวจพบบริเวณพื้นที่โครงการและพื้นที่ใกล้เคียงดังแสดงใน รูปที่ 6.4-14

(ก) งูเขียวปากจิ้งจก

(ค) นกกระทาดง

(ข) ขนหางของนกแซงแซวหางบ่วงใหญ่

(ง) นางอายพบวางขายที่ตลาดเช้าเมืองหงสา

รูปที่ $6.4-14$: ตัวอย่างสัตว์ป่า ที่สำรวจพบระหว่างวันที่ $22-30$ มีนากม 2011 บริเวณพื้นที่โครงการ และพื้นที่ใกล้เคียง

ตารางที่ $6.4-14$: จำนวนชนิดพันธุ์ที่สำรวจพบในพื้นที่ศึกษาของโครงการ

ประเภท	จำนวนชนิดพันธุ์ของแต่ละชั้นการจัดหมวดหมู่			
	อันดับ (Order)	วงศ์ (Family)	สกุล (Genus)	ชนิดพันธุ์ (Species)
สัตว์เลี้ยงลูกด้วยนม	10	18	28	35
นก	17	51	98	134
สัตว์เลื้อยคลาน	2	10	28	33
สัตว์สะเทินน้ำสะเทิน บก	1	5	11	18
	30	84	165	220

(ข) สถานภาพของสัตว์ป่า
สถานภาพทางด้านอนุรักษ์โดยพิจารณาจากระดับการลดลงของจำนวนประชากรเนื่องจากการถูก คุกคามโดยใช้เกณฑ์ในการพิจารณาของ International Union Conservation of Nature; IUCN (2008) พบว่าใน พื้นที่โครงการและพื้นที่ใกล้เคียงมีสัตว์ที่สำรวจพบทั้งสิ้น 220 ชนิด และอยู่ในสถานภาพถูกคุกคาม 7 ชนิด จำแนกเป็นสัตว์ใกล้สูญพันธุ์ (Endangered) 1 ชนิด สัตว์ที่มีแนวโน้มใกล้สูญพันธุ์พบ 6 ชนิด และสัตว์ใกล้ถูก คุกคาม (near threatened) 2 ชนิด ส่วนที่เหลืออีก 211 ชนิดซึ่งเป็นสัตว์ที่ไม่ได้อยู่ในสถานภาพอนุรักษ์สามารถ พบเห็นและกระจายพันรุ์ได้โดยทั่วไป ไม่ได้รับการขึ้นทะเบียนดังกล่าว ของ $I U C N$. สถานภาพของสัตว์ป่าที่ พบในพื้นที่ศึกษา สรุปได้ดัง ตารางที่ $6.4-15$

สัตว์เลื้อยคลาน : สัตว์เลื้อยคลานที่อยู่ในสถานภาพสัตว์ใกล้สูญพพนเุ์ (Endangered) พบ 1 ชนิด ได้แก่ เต่าหก Burmese Brown Torties (Manouria emys) และสัตว์ที่มีแนวโน้มใกล้สูญพพันธ์ (Vulnerable) พบ 4 ชนิด ได้แก่ ตะพาบน้ำ Common Softshell (Amyda cartilaginea) เต่าหับMalayan Box Terrapin (Cuora amboinensis) เต่านา Malaysian Snail-eating Turtle (Malayemys subtrijuga) และเต่าปูลู Big-headed Turtle (Platysternon megacephalum).

สัตว์เลี้ยงลูกด้วยนม : สัต ว์เลี้ยงลูกด้วยนมที่อยู่ในสถานภาพมีแนวโน้มใกล้สูญพันธุ์ (Vulnerable) พบ 2 ชนิด ได้แก่ หมีหมา Sun Bear (Ursus malayanus) และหมาไม้ Yellow-throated Marten (Martes flavigua).

สัตว์สะเทินน้ำสะเทินบก : สัตว์สะเทินน้ำสะเทินบกที่อยู่ในสถานภาพใกล้ถูกคุกคาม (near threatened) พบ 1 ชนิด ได้แก่อึ่งปากขวด Truncate-snouted Burrowing Frog (Glyphoglossus molossus).

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

สัตว์จำพวกนก : สัตว์จำพวกนกที่อยู่ในสถานภาพใกล้ถูกคุกคาม (near threatened) พบ 1 ชนิด ได้แก่ นกกก, นกกาฮัง Great Hornbill (Buceros bicornis).

ตารางที่ 6.4-15 : สถานภาพอนุรักษ์ของสัตว์ป่าในพื้นที่ศึกษาของโครงการ

ประเภท	จำนวน	รวม			
		สถานภาพอนุรักษ์ (ชนิด)			
		Cr	En	Vu	Nt
สัตว์เลี้ยงลูกด้วยนม	2	0	0	2	0
นก	1	0	0	0	1
สัตว่เลื้อยคลาน	5	0	1	4	0
สัตว์สะเทินน้ำสะเทินบก	1	0	0	0	1
รวม	9	0	1	6	2

6.4.8 การใช้ประโยชน์ที่ดิน
(1) วิธีการศึกษา

- รวบรวมข้อมูลทุติยภูมิ

ทำการรวบรวมข้อมูลทุติยภูมิจากแหล่งต่าง ๆ ได้แก่ แผนที่ภาพถ่ายดาวเทียม ของ Google Earth แผนที่ภูมิประเทศ มาตราส่วน $1: 100,000$ ประเทศ สปป.ลาว ฐานข้อมูลระบบสารสนเทศภูมิศาสตร์ (GIS) ขอบเขตการปกครอง แขวง เมือง ของประเทศ สปป.ลาว

วิเคราะห์ข้อมูลทุติยภูมิโดยจัดทำแผนที่ภาพถ่ายดาวเทียมประกอบกับแผนที่ภูมิประเทศ และ ฐานข้อมูลระบบสารสนเทศภูมิศาสตร์ แสดงขอบเขตแขวง เมือง เพื่อจำแนกการใช้ประโยชน์ที่ดินประเภท ต่างๆ เบื้องต้น จากการแปลภาพถ่ายดาวเทียม

- สำรวจภาคสนาม

ตรวจสอบข้อมูลในแผนที่การใช้ที่ดินภาคสนามระหว่างวันที่ $5-9$ มีนาคม 2554 เพื่อปรับปรุง แก้ไข และเพิ่มเติมหน่วยการใช้ที่ดินให้ตรงกับสภาพความเป็นจริงในบัจจุบันมากที่สุด
(2) ผลการศึกษา

จากการรวบรวมข้อมูลทุติยภูมิการใช้ประโยชน์ที่ดินในรัศมีพื้นที่ศึกษาข้างละ 100 เมตรจากแนว เส้นทางโครงการ พบว่าพื้นที่ส่วนใหญ่ ร้อยละ 50 ของพื้นที่ศึกษาเป็นพื้นที่ป่าไม้ รองลงมาเป็นพื้นที่เกษตรกรรม ร้อยละ 30 พื้นที่ชุมชนและสิ่งปลูกสร้าง ร้อยละ 15 ที่เหลืออีก ร้อยละ 5 เป็นพื้นที่ถนนและแหล่งน้ำ

ข้อมูลจากการสำรวจในขอบเขตพื้นที่ศึกษาข้างละ 100 เมตร จากแนวเส้นทางโครงการ คิดเป็น พื้นที่ประมาณ $2,255.69$ เฮกตาร์ สามารถแบ่งการใช้ประโยชน์ที่ดินได้เป็น 4 ประเภท ได้แก่ พื้นที่ชุมชนและ สิ่งปลูกสร้าง พื้นที่เกษตรกรรม พื้นที่ป่าไม้ และพื้นที่อื่นๆ ขนาดพื้นที่ดังแสดงในตารางที่ 6.4-16 และแผนที่ การใช้ที่ดินแสดงในรูปที่ 6.4-15 สรุปผลการสำรวจการใช้ประโยชน์ที่ดินในปัจจุบันได้ดังนี้

1) พื้นที่ชุมชน และสิ่งปลูกสร้าง มีพื้นที่ทั้งหมดประมาณ 310.38 เฮกตาร์ คิดเป็นพื้นที่ ร้อยละ 13.76 ของพื้นที่ศึกษา ประกอบด้วย

U2-หมู่บ้าน มีพื้นที่ทั้งหมดประมาณ 195.12 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 8.65 ของ พื้นที่ศึกษา มีจำนวน 23 หมู่บ้าน ที่อยู่ตามแนวสายทางโครงการ

U3-หน่วยงาน มีพื้นที่ทั้งหมดประมาณ 45.11 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 2.00 ของ พื้นที่ศึกษา ได้แก่

- ป้อมในการดูแลและจับกุมผู้ลักลอบตัดไม้ พบอยู่ที่ในเขต เมืองหงสา แขวง ไซยะบุรี กม.ที่ $47+100$ บริเวณเขตติดต่อกับเมืองจอมเพชร แขวงหลวงพระบาง
- พื้นที่ของทหาร ลักษณะการใช้ที่ดินเป็นพื้นที่สำหรับเลี้ยงสัตว์ เพื่อใช้ในการ ประกอบอาหารให้กับทหาร ในงานพิธีสำคัญทางทหาร และใช้เป็นเสบียงในการทำสงคราม พบอยู่ที่ในเขต เมืองจอมเพชร แขวงหลวงพระบาง กม.ที่ $55+500$
- พื้นที่ก่อสร้างศูนย์ราชการของเมืองจอมเพชร เขตเมืองจอมเพชร แขวงหลวงพระ บาง กม.ที่ $111+500$

ตารางที่ 6.4-16 รูปแบบการใช้ที่ดิน ในพื้นที่ศึกษา 100 เมตร

	รูปแบบการใช้ที่ดิน	สัญลักษณ์	เฮกตาร์	\%
พื้นที่ชุมชนและสิ่งปลูกสร้าง		U		
หมู่บ้าน		U2	195.12	8.65
หน่วยงาน		U3	45.11	2.00
โรงเรียน		U4	49.85	2.21
ป่าช้า		U10	20.30	0.90
	รวม		310.38	13.76
พื้นที่เกษตรกรรม		A		
ทุ่งนา		A1	120.68	5.35
พืชไร่ / ป่าเสื่อมโทรม		A2/F2	610.39	27.06
สวน		A3	19.85	0.88
บ่อปลา		A4	2.93	0.13
ทุ่งเลี้ยงสั		A5	3.38	0.15
	รวม		757.24	33.57
ป่าไม้		F		
ป่าดิบ		F1	493.32	21.87
ป่าเสื่อมโทรม		F2	112.33	4.98
ป่าละเมาะ		F2/F4	73.99	3.28
สวนสัก ยางพารา		F3	278.80	12.36
	รวม		958.44	42.49
อื่น ๆ				
ถนนบัจจุบัน		R	157.45	6.98
แหล่งน้ำ		W	72.18	3.20
	รวม		229.63	10.18
	รวมทั้งสิ้น		2,255.69	100.00

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)
(

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัรประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4.-15: ถักษณะการใช้ประโยชน์ที่ดินปัจจุบันตามแนวเส้นทางโครงการ (ต่อ)

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4.-15: ถักษณะการใช้ประโยชน์ที่ดินปัจจุบันตามแนวเส้นทางโครงการ (ต่อ)

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4.-15: ถักษณะการใช้ประโยชน์ที่ดินปัจจุบันตามแนวเส้นทางโครงการ (ต่อ)

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเซียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4.-15: ถักษณะการใช้ประโยชน์ที่ดินปัจจุบันตามแนวเส้นทางโครงการ (ต่อ)

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบขเบื้องตัน
โครงการพัฒนาถนนจากเมืองหงสา-ข้านเซียงแมน (เมืองจอมเพขร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.สาว)

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องตัน
โครงการพัฒนาถนนจากเมืองหงสา-ข้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4.-15: ถักษณะการใช้ประโยชน์ที่ดินปัจจุบันตามแนวเส้นทางโครงการ (ต่อ)

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบิ้องต้น
โครงการพัผนนาคนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระขาง) สาธารณรัรู้รระชาธิปไตยประชาชนลาว (สปป.ลาว)

โครงการพัฒนาถนนจากเมืองหงสา-ข้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

รายงานขั้นสุดท้าย (Final Report)

โครงการพัฒนาถนนจากเมืองหงสา-ข้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)
(
รูปที่ 6.4.-15: ถักษณะการใช้ประโยชน์ที่ดินปัจจุบันตามแนวเส้นทางโครงการ (ต่อ)

โครงการศึกษาความเป็นไปได้และออกแบขเบื้องตัน
โครงการพัฒนาถนนจากเมืองหงสา-ข้านเซียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบิ้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประขาธิปไตยประชาชนลาว (สปป.ลาว)

U4-โรงเรียน มีพื้นที่ทั้งหมดประมาณ 49.65 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 2.21 ของพื้นที่ศึกษา ได้แก่ โรงเรียนบ้านนาปุง โรงเรียนบ้านปากห้วยยาง โรงเรียนภูสามพาน โรงเรียนบ้านห้วยทรายขาว โรงเรียน บ้านสามพันไซ โรงเรียนบ้านนาไฮ โรงเรียนบ้านห้วยทาก โรงเรียนบ้านนาอ่าง โรงเรียนบ้านหอนไซ โรงเรียน บ้านปากลึง โรงเรียนบ้านโคกสว่าง และโรงเรียนบ้านท่าโพ

U10-ป่าช้า มีพื้นที่ทั้งหมดประมาณ 20.30 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 0.90 ของพื้นที่ศึกษา ได้แก่ ป่าช้าบ้านห้วยทรายขาว, ป่าช้าบ้านนางิ้ว, ป่าช้าบ้านหนองจอง, ป่าช้าบ้านโคกสว่าง และป่าช้า บ้านท่าโพ
2) พื้นที่เกษตรกรรม มีพื้นที่ทั้งหมดประมาณ 736.93 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 32.67 ของพื้นที่ศึกษา ประกอบด้วย

Al -ทุ่งนา มีพื้นที่ทั้งหมดประมาณ 120.68 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 5.35 ของพื้นที่ศึกษา เป็น พื้นที่ปลูกข้าวนาปี
$\mathrm{A} 2 / \mathrm{F} 2$-พืชไร่/ป่าเสื่อมโทรม มีพื้นที่ทั้งหมดประมาณ 610.39 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 27.06 ของพื้นที่ศึกษา เป็นการทำไร่เลื่อนลอย คือ ย้ายที่ไปเรื่อยๆ หลังจากที่ดินขาดความอุดมสมบูรณ์หรือมีวัชพืช เกิดขึ้นมาก ลักษณะการใช้ที่ดินประเภทนี้ ทำให้มีการทำลายป่าเพื่อการเพาะปลูก และ ในบริเวณพื้นที่ยังคงพบ เห็นสภาพป่าดังเดิมที่ถูกทำลาย ชนิดพืชไร่ที่ปลูกได้แก่ ข้าว ข้าวโพด

A 3 -สวน มีพื้นที่ทั้งหมดประมาณ 19.65 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 0.88 ของพื้นที่ศึกษา ไม้ผลที่ พบปลูก ได้แก่ มะม่วง และ กล้วย

A4-บ่อปลา มีพื้นที่ทั้งหมดประมาณ 2.93 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 0.13 ของพื้นที่ศึกษา พบ จำนวน 3 แห่ง ที่ KM. $62+000 \mathrm{KM} .62+600 \mathrm{KM} .114+000$

3) พื้นที่ป่าไม้ มีพื้นที่ทั้งหมดประมาณ 1003.56 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 44.49 ของ พื้นที่ศึกษา ประกอบด้วย
$\mathrm{F} 1-ป ่ า ไ ม ้ ~ ม ี พ ื ้ น ท ี ่ ท ั ้ ง ห ม ด ป ร ะ ม า ณ ~ 493.32$ เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 21.87 ของพื้นที่ศึกษา เป็น ผืนป่าที่ค่อนข้างสมบูรณ์ และขังมีพันธ์ไม้เด่น ให้พบเห็นเช่น ต้นประดู่ ต้นรัง ต้นตะแบก เป็นต้น เป็นเขตป่าที่สงวนไว้เพื่ออนุรักษ์และรักษาแหล่งน้ำ

F2-ป่าเสื่อมโทรม มีพื้นที่ทั้งหมดประมาณ 112.33 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 4.96 ของพื้นที่ ศึกษา เป็นพื้นที่ป่าที่ถูกทำลาย ตัดต้นไม้ ไปใช้ทำประโขชน์ เป็นป่าที่มีพันธ์ไม้เด่นเหลืออยู่น้อยมาก

F2/F4-ป่าละเมาะ มีพื้นที่ทั้งหมดประมาณ 73.99 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 3.28 ของพื้นที่ศึกษา เป็นพื้นที่ป่าที่ถูกทำลาย ตัดต้นไม้ไปใช้ทำประโยชน์หรือเป็นพื้นที่ไร่เก่าแต่ปัจจุบันปล่อยร้าง และ ในบริเวณมีไม้พุ่มขึ้นปกคลุม

F3-สวนสัก ยางพารา มีพื้นที่ทั้งหมดประมาณ 278.80 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 12.36 ของ พื้นที่ศึกษา เป็นสวนป่าไม้เศรฐษกิจ ไม้ที่พบปลูก ได้แก่ ต้นสัก และยางพารา
4) พื้นที่อื่นๆ มีพื้นที่ทั้งหมดประมาณ 229.63 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 10.18 ของ พื้นที่ศึกษา ประกอบด้วย

R-ถนน มีพื้นที่ทั้งหมดประมาณ 157.45 เฮกตาร์ คิดเป็นพื้นที่ร้อยละ 6.98 ของพื้นที่ศึกษา
W-แหล่งน้ำ มีพื้นที่ทั้งหมดประมาณ 72.18 เยกตาร์ คิดเป็นพื้นที่ร้อยละ 3.2 ของพื้นที่ศึกษา
6.4.9 การเกษตรกรรม
(1) วิธีการศึกษา

- รวบรวมข้อมูล ด้านการเกษตรกรรมจากหน่วยงานที่เกี่ยวข้อง เช่น สำนักงานเกษตร เมือง เป็นต้น แล้วนำมาประมวลผลด้านการเกษตรกรรมให้สอดคล้องกับผลจากการศึกษาการใช้ประโยชน์ ที่ดินในพื้นที่ศึกษาข้างละ 100 เมตร
- สำรวจภาคสนามเกี่ยวกับพื้นที่เกษตรกรรมบริเวณพื้นที่ศึกษา พร้อมทั้งสอบถาม เกษตรกรในพื้นที่ เช่น ประเภทของการเกษตรกรรม พื้นที่ที่ทำการเกษตร ชนิดและปริมาณผลผลิต เป็นต้น
(2) ผลการศึกษา
(ก) การปลูกพืช
ในเขตพื้นที่ศึกษาข้างละ 100 เมตร มีพื้นที่ปลูกพืชผล ต้นไม้ ประมาณ $1,029.73$ เฮกตาร์ จาก พื้นที่ศึกษาทั้งหมด 2255.69 เฮกตาร์ พบชนิดของพืชผล และต้นไม้ ที่ปลูก มีดังนี้

นาข้าว (นาดำ) มีพื้นที่ประมาณ 120.68 ไร่ หรือร้อยละ 5.35 ของพื้นที่ศึกษา ประชาชนเริ่มเพาะปลูกข้าวในเดือนมิถุนายน และเก็บเกี่ยวเดือนตุลาคม โดยปลูกได้ปีละครั้ง อาศัยน้ำฝน ไม่มี ระบบชลประทาน ไม่มีการจัดการ เช่น การฉีดยาม่าแมลงและวัชพืช ไม่มีการใส่ปุ๋ย ผลผลิตข้าวเฉลี่ย 2.5 ตัน ต่อเฮกตาร์

พืชไร่ มีพื้นที่ประมาณ 610.39 ไร่ หรือร้อยละ 27.06 ของพื้นที่ศึกษาทั้งหมด ชนิดพืชที่พบ ได้แก่ ข้าว และข้าวโพด เป็นการทำเกษตรแบบไร่เลื่อนลอยหรือการเกษตรที่สูงอย่างหนึ่งเนื่องจาก ภูมิประเทศเป็นภูเขาสูงเป็นส่วนใหญ่ พื้นที่ราบค่อนข้างน้อย การทำการเกษตรประเภทนี้จะส่งผลกระทบอย่าง มากต่อสภาพแวดล้อมในพื้นที่ โดยปัญหาต่างๆ ที่เกิดขึ้น จากการทำลายป่า ตัด ถางและเผา เกษตรกรจะเพาะปลูก พืชหมุนเวียนกันไปทุกปี เพื่อให้ผืนดินและสภาพป่าได้ฟื้นคืนสภาพ ในขณะที่พื้นที่โดยรอบก็จะถูกแผ้วถางเพื่อ ทำไร่เลื่อนลอยหมุนเวียนเปลี่ยนกันไปในแต่ละปี เมื่อครบ 3 ปีก็จะเวียนกลับมาที่เดิม

- ไม้ยืนต้น มีเนื้อที่ประมาณ 278.80 ไร่ หรือร้อยละ 12.36 ของพื้นที่ศึกษาทั้งหมด พบปลูกอยู่ภายในเขตเมืองจอมเพชร แขวงหลวงพระบาง ตามพื้นที่ลาดหรือพื้นที่เชิงเขา ชนิดไม้ที่ปลูกได้แก่ สัก และยางพารา สักใช้เวลาปลูก 15 ปี ถึงตัดขายได้ ต้นสักในพื้นที่โครงการส่วนใหญ่อายุ $3-5$ ปี ส่วนยางพารา เพิ่งเริ่มปลูกตามการส่งเสริมของรัฐบาล ซึ่งส่วนใหญ่เป็นพื้นที่สัมปทาน การปลูกยางพารามักจะปลูกบริเวณ พื้นที่ความชัน 15 องศาขึ้นไป และต้องทำแนวขั้นบันไดโดยใช้ระยะระหว่างขั้นบันไดอย่างน้อย 8 เมตร ระยะ ระหว่างต้น 2.50 หรือ 3 เมตร
(ข) การเลี้ยงสัตว์
ครัวเรือนเกษตรกรในพื้นที่ศึกษาเลี้ยงสัตว์ใหญ่ประเภทโคเนื้อมากที่สุด รองลงมาเลี้ยงสุกร ส่วน สัตว์ปีกเลี้ยงไก่พื้นเมืองมากที่สุด การเลี้ยงสัตว์ในพื้นที่ไม่มีระบบฟาร์ม ส่วนใหญ่เลี้ยงปล่อยให้หากินเอง ภายในบริเวณพื้นที่อยู่อาศัย พื้นที่ป่าละเมาะใกล้เคียงชุมชน และพื้นที่เพาะปลูกช่วงนอกฤดูกาลเพาะปลูก การ เลี้ยงสัตว์ในลักษณะดังกล่าวมีต้นทุนถูกเนื่องจากไม่มีค่าอาหาร ไม่มีการจัดการ เช่น วัคซีน และยารักษาโรค

นอกจากนี้พบว่ามีการเลี้ยงปลาโดยขุดบ่อดินขนาด 6×10 เมตร ลึกประมาณ 1.50 เมตร
6.4.10 การคมนาคม
(1) วิธีการศึกษา

สำรวจสภาพถนนปัจจุบันในวันที่ 22 มีนาคม พ.ศ. 2554 และตรวจนับปริมาณจราจรในช่วงต้น เดือนเมษายน พ.ศ. 2554
(2) ผลการศึกษา

- สภาพถนน: สภาพถนนปัจจุบันเป็นถนนดินกว้างประมาณ 4 เมตร ลัดเลาะไปตามไหล่ เขา บางช่วงมีความลาดชันสูง จุดตัดลำน้ำทุกจุดไม่มีสะพานสำหรับรถยนต์ จึงใช้ประโยชน์ได้เฉพาะถดูแล้ง ตลอดแนวเส้นทางมีการตั้งหมู่บ้านเป็นระยะ รวม 21 หมู่บ้าน ในบางช่วงมีบ้านเรือนอยู่ชิดขอบทาง (รูปที่ 6.4-16)

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น

โครงการพัฒนาถนนจากเมืองหงสา-ข้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4-16 สภาพของถนนในปัจจุบัน

ตารางที่ 6.4-17
ปริมาณการจราจรบริเวณเส้นทางโครงการจำแนกตามชนิดยานพาหนะ

ชนิดของยานพาหนะ	จุดสำรวจและทิศทาง			
	เริ่มต้นโครงการ		สิ้นสุดโครงการ	
	ไปเมืองหงสา	ไปเมืองหลวงพระ บาง	ไปเมืองหง สา	ไปเมืองหลวงพระ บาง
1. รถจักรยาน 2 ล้อ และ 3 ล้อ	1	1	131	123
2. รถจักรยานยนต์และสามล้อ เครื่อง	148	151	509	494
3. รถยนต์นั่งส่วนบุคคล	21	24	29	22
4. รถโดยสารขนาดเล็กและขนาด กลาง	2	-	19	20
5. รถโดยสารขนาดใหญ่	-	-	-	-
6. รถบรรทุกขนาดเล็ก	4	4	40	40
7. รถบรรทุกขนาดกลาง	1	2	4	4
8. รถบรรทุกขนาดใหญ่	7	6	-	-
รวม (คัน/วัน)	184	188	733	702
$\mathrm{PCU} /$ วัน	123	124	423	405

- ปริมาณจราจร: จากการตรวอนับปริมาณจราจร 2 จุด คือ จุดเริ่มต้นโครงการ และ จุดสิ้นสุดโครงการ (รูปที่ 6.4-17) เป็นเวลา 2 วัน พบว่าปริมามจราจร ณ จุดสิ้นสุดของโครงการมีมากกว่าจุด เริ่มโครงการ ชนิดของยานพาหนะส่วนใหญู่เป็นรถจักรยานยนต์เดะสามล้อเครื่อง รองลงมาคือ รถจักรยาน สองล้อ และสามล้อ รถยนต์น์่งส่วนบุคคล รถบรรทุกขนาคเล็ก รถโดยสารขนาคเล็กและขนาคกลาง รถบรรทุก

ตารางที่ $6.4-18$ ข้อมูลการจราจรบริเวณเส้นทางโครงการในปัจจุบัน

ข้อมูล	เริ่มต้น โครงการ	สิ้นสุด โครงการ	เริ่มต้น โครงการ	สิ้นสูดโครงการ	เฉลี่ย
	ไปเมืองหงสา	ไปเมือง หลวงพระ บาง	ไปเมืองหงสา	ไปเมือง หลวงพระบาง	
ปริมาณจราจรใน แต่ละวัน (PCU/day)	123	124	423	405	268.75
ปริมาณจราจรใน ชั่วโมงเร่งด่วน *(V) (PCU/hour)	12.3	12.4	42.3	40.5	26.88
Carrying capacity (C) (PCU/hour)	2,000	2,000	2,000	2,000	2,000
V/C ratio in peak hour	0.006	0.006	0.02	0.02	0.013
สภาพจราจร	การจราจร คล่องตัวและ รถสามารถ เคลื่อนที่ได้ดี มาก	การจราจร คล่องตัวและ รถสามารถ เคลื่อนที่ได้ดี มาก	การจราจร คล่องตัวและ รถสามารถ เคลื่อนที่ได้ดี มาก	การจราจร คล่องตัวและ รถสามารถ เคลื่อนที่ได้ดี มาก	การจราจร คล่องตัว และรถสามารถ เคลื่อนที่ได้ดีมาก

*หมายเหตุ: การเดินทางในชั่วโมงเร่งด่วนคิดในช่วงเวลากลางวัน ซึ่งปริมามการจราจรในชั่วโมงเร่งค่วนคิด เป็นร้อยละ 10 ของปริมานการจราจรทั้งหมดในหนึ่งวัน

6.4.11 สาธารณูปโภค
(1) วิธีการศึกษา

รวบรวมข้อมูลทุติยภูมิด้านสาธารณูปโภคและสำรวจภาคสนาม บริเวณหมู่บ้านที่อยู่บริเวณ พื้นที่โครงการระหว่างวันที่ 21-26 มีนาคม พ.ศ. 2554
(2) ผลการศึกษา
(ก) การใช้ไฟฟ้า
บริเวณจุดเริ่มต้นโครงการ ได้แก่ บ้านนาปุง บ้านดอนใหญ่ และบ้านน้ำแก่น เมืองหงสามีเสา ไฟฟ้าที่จ่ายไฟฟ้ามาใช้ในครัวเรือน สำหรับบริเวณหมู่บ้านอีก 16 หมู่บ้าน ในเขตเมืองจอมเพชร ส่วนใหญ่มี ไฟฟ้าใช้แล้ว จากการจ่ายกระแสไฟฟ้าจากเสาไฟฟ้าที่มีตั้งแต่บริเวณบ้านดอนไซ ไปถึงปลายทางบ้านเชียงแมน นอกจากนี้มีหมู่บ้านที่ใช้ไฟฟ้าจากไดนาโมขนาดเล็กที่ใช้พลังงานน้ำในลำน้ำธรรมชาติ เช่น บ้านห้วยทรายขาว และบ้านนาไฮ
(ข) การใช้น้ำ
แหล่งน้ำใช้ชุมชนตามแนวเส้นโครงการ ได้แก่ ลำห้วยต่าง ๆ เช่น น้ำแก่น ห้วยสิงห์ ห้วยทรายขาว ห้วยคง ห้วยลืม ห้วยค้อ ห้วยทาก และแม่น้ำโขง โดยใช้ประโยชน์เพื่ออุปโภค-บริโค การเกษตร และปศุสัตว์ น้ำเพื่อการอุปโภค-บริโภค นำมาใช้โดยผ่านระบบประปาต่อท่อจากห้วยต่าง ๆ บนภูเขามายังก๊อกน้ำรวมของ หมู่บ้าน
(ค) การจัดการของเสีย
บริเวณพื้นที่โครงการเริ่มพบเศษขยะ ซึ่งส่วนใหญ่เป็นบรรจุภัณฑ์สินค้าบริโภคจากร้านค้าใน ชุมชนที่คนในชูมชนทิ้งลงบริเวณริมถนน และลำห้วยต่าง ๆ ดังแสดงในรูปที่ 6.4-18

รูปที่ 6.4-18 : เศษขยะที่พบบริเวณริมถนนโครงการและในแหล่งน้ำ
6.4.12 สาธารณสุข
(1) วิธีการศึกษา

รวบรวมด้านสาธารณสุขจากหน่วยงานสาธาณสุขเมืองหงสา และสาธาณสุข เมืองจอมเพชร ระหว่างวันที่ $21-26$ มีนาคม พ.ศ. 2554
(2) ผลการศึกษา

- เมืองหงสา

ข้อมูลด้านสาธารณสุขเมืองหงสา พบว่า ปี พ.ศ.2551-2553 มีโรงพยาบาลประจำเมือง 1 แห่ง และ ร้านขายยาจำนวน 6 แห่ง สถานีอนามัย 7 แห่ง (ปี พ.ศ. 2553 เหลือเพียง 6 แห่ง) สำหรับบุคลากรทางการแพทย์ ในเมืองหงสา และสถิติทางจำนวนประชากรรวมถึงอัตราการเกิดและตายแสดงดังตารางที่ 6.4-19- ถึง $6.4 .-20$

ตารางที่ 6.4-19จำนวนบุคลากรทางการแพทย์เมืองหงสา

บุคลากรทางการแพทย์	$\mathbf{2 5 5 1}$	$\mathbf{2 5 5 2}$	$\mathbf{2 5 5 3}$	
	ผู้ช่วยแพทย์	16	16	15
	สูติแพทย์	2	2	2
	เจ้าหน้าที่อนามัย	1	1	1

ที่มา: ข้อมูลจากสาธารณสุขเมืองหงสา ปี 2554
ตารางที่ 6.4-20 สถิติทางจำนวนประชากรรวมถึงอัตราการเกิดและตายเมืองหงสา

สถิติ		เมืองหงงสา		
		2551	2552	2553
จำนวนประชากรทั้งหมด		26,187	26,544	25,176
ชาย		12,995	13,306	12,587
หญิง		13,192	13,238	2,589

โครงสร้าง						
อัตราการเกิดต่อประชากร 1000 คน		14.43	15.14	14.85		
อัตราการตายต่อประชากร 1000 คน		3.62	3.72	2.58		
อัตราการตายของทารกแรกเกิด		1 ปี	13.22	24.87		
ต่อ 1000 คน	5 ปี	21.16	29.85	16.69		

ที่มา: ข้อมูลจากสาธารณสุขประจำเมืองหงสา ปี 2554

สำหรับสาเหตุหลักของโรคที่เมืองหงสาจากการรวบรวมข้อมูลจากสถานีอนามัยประจำเมืองหงสามี สถิติดังแสดงในตารางที่ 6.4-21 ซึ่งพบว่าในปีพ.ศ. 2551 โรคที่พบเป็นอันดับที่ 1 คือ โรคทางระบบหมุนเวียนเลือด ปีพ.ศ. 2552 โรคที่พบเป็นอันดับที่ 1 คือ โรคทางระบบประสาท ปีพ.ศ. 2553 โรคที่พบเป็นอันดับที่ 1 คือ โรค ไข้หวัดใหญ่ ส่วนสถิติของผู้ป่วยนอกแลผู้ป่วยของเมืองหงสา แสดงดังตารางที่ $6.4-22$

ตารางที่ 6.4-21 สถิติสาเหตุหลักของโรคที่พบในเมืองหงสา

ตารางที่ 6.4-21 สถิติสาเหตุหลักของโรคที่พบในเมืองหงสา			
2551	$\mathbf{2 5 5 2}$	2553	
1. โรคทางระบบหมุนเวียนเลือด	1. โรคทางระบบประสาท	1. โรคไข้หวัดใหญ่	
2. โรคทางระบบประสาท	2. โรคไข้หวัดใหญ่	2. โรคทางระบบประสาท	
3. โรคในระบบขับถ่าย	3. โรคทางระบบหมุนเวียนเลือด	3. โรคไทรอยด์	
4. โรคไข้หวัดใหญ่	4. โรคไทรอยด์	4. แผลซิฟิลิส	
5. โรคทางระบบพัน	5. โรคปอดบวม	5. โรคทางระบบหมุนเวียนเลือด	

ที่มา: ข้อมูลจากสถานีอนามัยประจำเมืองหงสา ปี 2554
ตารางที่ $6.4-22$ สถิติผูป่วยนอกและผู้ป่วยในของเมืองหงสา

	$\mathbf{2 5 5 1}$	$\mathbf{2 5 5 2}$	$\mathbf{2 5 5 3}$
1. ผู้ป่วยนอก	$\mathbf{9 , 8 8 3}$	12,524	$\mathbf{1 5 , 2 6 2}$
2. ผู้ป่วยใน	$\mathbf{6 9 9}$	748	756
3. สาเหตุการตายในโรงพยาบาล	อุบัติเหตุและ ความดันโลหิต สูง	ขาดวิตามิน B 1 อุบัติเหตุและ การ ตายตั้งแต่ยังทารก	อุบัติเหตุ มาลาเลีย
4. การให้วัคซีน	78.86%	87.71%	94.42%

ที่มา: ข้อมูลจากสถานีอนามัยประจำเมืองหงสา ปี 2554

- เมืองจอมเพชร

ข้อมูลด้านสาธารณสุขเมืองจอมเพชร ปี พ.ศ. $2551-2553$ มีโรงพยาบาลประจำเมือง 1 แห่ง สถานี อนามัย 6 แห่งและร้านขายยาจำนวน 3 แห่ง สำหรับบุคลากรทางการแพทย์ในเมืองจอมเพชร และสถิติทาง จำนวนประชากรรวมถึงอัตราการเกิดและตายแสดงดังตารางที่ $6.4-23$ ถึง $6.4-24$

ตารางที่ 6.4-23 จำนวนบุคลากรทางการแพทย์เมืองจอมเพชร

บุคลากรทางการแพทย์	$\mathbf{2 5 5 1}$	$\mathbf{2 5 5 2}$	$\mathbf{2 5 5 3}$
ผู้ช่วยแพทย์	32	35	38
สูติแพทย์	2	5	20
เจ้าหน้าที่อนามัย	2	2	2

ที่มา: ข้อมูลจากสาธารณสุขเมืองจอมเพชร ปี 2554

ตารางที่ 6.4-24 สถิติทางจำนวนประชากรรวมถึงอัตราการเกิดและตายเมืองจอมเพชร

สถิติ		เมืองจอมเพชร		
		2551	2551	2551
จำนวนประชากรทั้งหมด		28,777	29,172	29,928
ชาย		14,212	14,261	14,394
หญิง		14,565	14,911	15,534
โครงสร้าง				
อัตราการเกิดต่อประชากร 1000 คน		524	298	461
อัตราการตายต่อประชากร 1000 คน		155	72	99
อัตราการตายของทารกแรกเกิด ต่อ 1000 คน	1 ปี	51	15	12
	5 ปี	6	7	4

ที่มา: ข้อมูลจากสาธารณสุขเมืองจอมเพชร ปี 2554
สำหรับสาเหตุหลักของ โรคที่เมืองจอมเพชรจากการรวบรวมข้อมูลจากสถานีอนามัยประจำเมือง จอมเพชรพบว่าประชาชนส่วนใหญ่ขาดความรู้เรื่องอนามัย และ โรคที่พบส่วนใหญ่ตั้งแต่ปีพ.ศ. 2551 ถึงปี พ.ศ. 2553 คือ โรคระบบทางเดินอาหารเนื่องจากขาดสุขาที่ถูกหลักอนามัย รวมทั้งประชาชนส่วนใหญ่ขาดการ ฉีดวัคซีนป้องกันโรค

6.4.13 สถานที่สำคัญและแหล่งท่องเที่ยว

(1) วิธีการศึกษา

สำรวจภาคสนามและสัมภาษณ์ผู้นำชุมชนเกี่ยวกับแหล่งท่องเที่ยวและสถานที่สำคัญในบริเวณ พื้นที่โครงการระหว่างวันที่ 21-26 มีนาคม พ.ศ. 2554
(2) ผลการศึกษา

ตามแนวเส้นทางโครงการและพื้นที่ใกล้เคียงมีแหล่งท่องเที่ยวประเภทน้ำตกหรือที่เรียกว่าตาด อยู่ หลายแห่ง เช่น น้ำตกร้อยครัว ซึ่งตั้งอยู่ในบริเวณเมืองจอมเพชร แขวงหลวงพระบาง ระยะห่างจากเส้นทาง โครงการประมาณ 100 เมตร ตั้งอยู่บนภูเขาที่ปกคลุมด้วยป่าดิบชื้น จากการสัมภาษณ์ชาวบ้านในพื้นที่พบว่าชื่อ ของน้ำตกร้อยครัวนั้นเกิดจากการที่ชาวบ้านจำนวน 100 ครัวเรือน ลี้ภัยสงครามเข้ามาอาศัยในอยู่ในถ้ำแล้ว เสียชีวิตทั้งหมด สภาพแวดล้อมปัจจุบันของน้ำตกร้อยครัวแสดงดังรูปที่ $6.4-19$ สำหรับตำแหน่งน้ำตกร้อยครัว แสดงดังรูปที่ 6.4-20

รูปที่ 6.4-19 : สภาพแวดล้อมปัจจุบันของน้ำตกร้อยครัว
ในระยะ 100 เมตรจากเขตถนนโครงการ มีวัด 1 แห่ง และป่าช้าของหมู่บ้าน 3 แห่ง โดยอยู่ในเขตเมืองจอมเพชร ได้แก่

- วัดท่าโพ
- ป่าช้าบริเวณบ้านห้วยทรายขาว
- ป่าช้าบริเวณบ้านนาไฮ
- ป่าช้าบริเวณบ้านนางิ้ว
- ป่าช้าบริเวณบ้านลาดโคก

สำหรับป่าช้านั้นเป็นสถานที่ฝังศพคนตายซึ่งบัจจุบันก็ยังใช้ทำกิจกรรมดังกล่าวอยู่ สภาพแวดล้อม ปัจจุบันของป่าช้าแสดงดังรูปที่ 6.4-21 ส่วนตำแหน่งของวัดและป่าช้าแสดงดังรูปที่ 6.4-20

ป่าช้าบริเวณบ้านห้วยทรายขาว
ป่าช้าบริเวบบ้านนาไฮ

ป่าช้าบริเวณบ้านลาดโคก
รูปที่ 6.4-21 : สภาพแวดล้อมปัจจุบันของป่าช้าของหมู่บ้านที่อยู่ในระยะ 100 เมตรจากแนวเส้นทางโครงการ
นอกจากนี้จากการสัมภาษณ์ผู้นำของหมู่บ้านใกล้เคียงกับพื้นที่โครงการยังพบแหล่งท่องเที่ยวและ สถานที่สำคัญ แต่ห่างจากพื้นที่ถนนมากกว่า 100 เมตร มีดังต่อไปนี้

- บ้านปากห้วยยาง พบภูหนองแดง และตาดห้วยดอน
- บ้านพูสามพัน พบป่าหินใหญู่
- บ้านหลัก 62 พบน้ำตก (ตาด)
- บ้านสามพันไซ พบวัดเก่า ตาดลืม ตาดจูน และตาดห้วยทิ้ง
- บ้านนาไฮ พบถ้ำพูเจีย และถ้ำหนองเขียว
- บ้านห้วยทาก พบถ้ำ
- บ้านหนองจอง พบวัด และหนองพู
- บ้านปากลึงพบ วัดปากลึงซึ่งมีอายุ 300 ปี ภูช้าง และตาดบัว
- บ้านโคกสว่าง พบป่าศักดิ์สิทธิ์
- บ้านท่าโพ พบวัดท่าโพ
6.4.14 เศรษฐิกิจ-สังคม
(1) วิธีการศึกษา
- รวบรวมข้อมูลทุติยภูมิ เช่น แผนพัฒนาเศรษฐูกิจ-สังคมของเมืองหงสา และเมือง จอมเพชร ปี พ.ศ.2010-2015 และสถิติข้อมูลที่เกี่ยวข้อง ประชากร การปกครอง ชนเผ่า การประกอบอาชีพ และโครงสร้างพื้นฐานต่างๆ ใ นชุมชนตามแนวเส้นทางโครงการ
- สำรวจภาคสนาม โดยการสัมภาษณ์ผู้นำทุกหมู่บ้านตามแนวเส้นทางโครงการ และ จัดทำ Village profile รวมทั้งสุ่มสัมภาษณ์ครัวเรือนในอีก 100 ตัวอย่าง

ตำแหน่งหมู่บ้านตามแนวเส้นทางของโครงการแสดงรูปที่ $6.4-22$ และกิจกรรมการสำรวจแสดง ในรูปที่ $6.4-23$

รูปที่ 6.4-22 : กิจกรรมการสัมภาษณ์ผู้นำชุมชนและสัมภาษณ์หัวหน้าครัวเรือน

(2) ผลการศึกษา

2.1 ข้อมูลพื้นฐานของชุมชนตามแนวเส้นทางโครงการ

- หมู่บ้าน: ตามแนวเส้นทางโครงการมีหมู่บ้านที่อยู่ใกล้เคียงรวม 21 หมู่บ้าน เป็นหมู่บ้านที่อยู่ในเขตปกครองของเมืองหงสา แขวงไซยะบุรี 5 หมู่บ้าน อีก 16 หมู่บ้านอยู่ในเขตปกครองของ เมืองจอมเพชร แขวงหลวงพระบาง (ตารางที่ 6.4-25) อายุของหมู่บ้านน้อยที่สุดคือ 2 ปี และมากที่สุดคือ 400 ปี ส่วนใหญู่ตั้งเป็นกลุ่มๆตามแนวถนน

- ประชากร : ประชากรรวม 11,772 คน และ 2,105 หลังคาเรือน ขนาดครอบครัว 5 คนต่อครอบครัว (ตารางที่ 6.4-25) ประกอบด้วย 6 ชนเผ่า ได้แก่ ลาว ม้ง ขมุ ลื้อ พูไท และ ไทดำ ซึ่งชนเผ่าลาว นับถือศาสนาพุทธ ส่วนชนเผ่าอื่นๆนับถือผี

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

ตารางที่ 6.4-25 รายชื่อหมู่บ้านและประชากรตามแนวเส้นทางโครงการ

อันดับ	เมือง	แขวง	ชื่อหมู่บ้าน	ประชากร (คน)	จำนวน หลังคาเรือน
1	หงสา	ไซยะบุรี	บ้านนาปุง (Ban Na Poung)	427	78
2	หงสา	ไซยะบุรี	บ้านดอนใหม่ (Ban Don Mai)	714	89
3	หงสา	ไซยะบุรี	บ้านน้ำแก่น (Ban Nam Kaen)	714	89
4	หงสา	ไซยะบุรี	บ้านปากห้วยยาง (Ban Pak Houay Yang)	588	97
5	หงสา	ไซยะบุรี	บ้านพูสามพัน (Ban Phu Sam Phan)	80	11
6	จอมเพชร	หลวงพระบาง	บ้านหลัก 62 ซึ่งประกอบด้วย บ้านสมจันทร์ และ บ้านกิ่ว แทง(Ban Lak 62 (included Ban Som Chan, Ban Kew Tang))	721	92
7	จอมเพชร	หลวงพระบาง	บ้านห้วยทรายขาว (Ban Houay Sai Khao)	343	60
8	จอมเพชร	หลวงพระบาง	บ้านสามพันไซ (Ban Sam Phan Xai)	372	62
9	จอมเพชร	หลวงพระบาง	บ้านนาแล ($\mathrm{Ban} \mathrm{NaLae)}$	233	47
10	จอมเพชร	หลวงพระบาง	บ้านนาไฮ (Ban NaHai)	261	40
11	จอมเพชร	หลวงพระบาง	บ้านนางิ้ว (Ban Na Ngew)	287	47
12	จอมเพชร	หลวงพระบาง	บ้านห้วยขาน (Ban Houay Khan)	537	80
13	จอมเพชร	หลวงพระบาง	บ้านห้วยทาก (Ban Houay Thak)	487	96
14	จอมเพชร	หลวงพระบาง	บ้านนาอ่าง (Ban Na Ang)	501	78
15	จอมเพชร	หลวงพระบาง	บ้านดอนไซ (Ban Don Xai)	318	60
16	จอมเพชร	หลวงพระบาง	บ้านห้วยปากข้อ (Ban Houay Pak Kho)	669	121
17	จอมเพชร	หลวงพระบาง	บ้านหนองจอง ซึ่ง ประกอบด้วยบ้านจองและบ้าน	1,368	232

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

อันดับ	เมือง	แขวง	ชื่อหมู่บ้าน	ประชากร (คน)	จำนวน หลังคาเรือน
			หนองพู (Ban Nong Jong included Jong+Nong Phu)		
18	จอมเพชร	หลวงพระบาง	บ้านปากลึง (Ban Pak Leung)	610	127
19	จอมเพชร	หลวงพระบาง	บ้านโคกสว่าง (Ban Knok Sawang)	553	82
20	จอมเพชร	หลวงพระบาง	บ้านโพลาดซึ่งประกอบด้วย บ้านลาดโคก และบ้านท่าโพ (Ban Po Lad included Lat K.ok+Tha Pho)	714	156
21	จอมเพชร	หลวงพระบาง	บ้านเชียงแมน (Ban Chiangman)	1065	321
รวม				11,772	2,105

- สภาพทางเศรษฐกิจ : ประชากรทุกหมู่บ้านที่อยู่ใกล้เคียงโครงการประกอบอาชีพ เกษตรกรรม ปลูกข้าว พืชไร่ (ข้าวโพด ขาสูบ เดือย งา สับปะรด) พืชผัก (ผักกาด กระหล่ำปลี หอม กระเทียม) และไม้ยืนต้น (ยางพารา และสัก) บางหมู่บ้านมีอาชีพเสริมในการทอผ้า มีรายได้ประมาณ $5,000,000-$ $25,000,000$ กีบต่อครัวเรือนต่อปี และมีรายจ่ายใกล้เคียงกับรายได้ $750,000-15,000,000$ กีบต่อครัวเรือนต่อปี ขนาดการถือครองที่ดินเฉลี่ย $2-3$ เฮกตาร์ต่อครัวเรือน และเกือบทั้งหมดครอบครองที่ดินโดยมีเพียงใบ ครอบครองที่ดินชั่วคราวเท่านั้น

- โครงสร้างพื้นฐานและการบริการสังคม : หมู่บ้านตามแนวเส้นทางโครงการ 21 หมู่บ้าน มีระบบไฟฟ้าแล้ว 10 หมู่บ้าน ซึ่งเป็นหมู่บ้านที่อยู่ช่วงต้นและช่วงปลายของแนวเส้นทางโครงการ ได้แก่ บ้านนาปุง บ้านดอนใหม่ เมืองหงสา บ้านดอนไซ บ้านห้วยปากข้อ บ้านนาจอง บ้านปากลึง บ้านโคก สว่าง บ้านโพลาด และบ้านเชียงแมน เมืองจอมเพชร ในหมู่บ้านที่ไม่มีระบบไฟฟ้า ครัวเรือนส่วนหนึ่งใช้ กระแสไฟฟ้าจากเครื่องปั่นไฟขนาดเล็กด้วยพลังน้ำ ในด้านแหล่งน้ำอุปโภคบริโภคเกือบทุกหมู่บ้านใช้ น้ำประปาภูเขา ซึ่งมีปริมาณเพียงพอตลอดปี และมีคุณภาพดี ทุกหมู่บ้านมีโรงเรียนประถมศึกษา ซึ่งบาง โรงเรียนมีไม่ครบชั้นเรียน ชาวบ้านใช้บริการสถานพยาบาลที่มีอยู่ในบางหมู่บ้าน อย่างไรก็ตามทุกหมู่บ้านมี ตู้ยาประจำบ้าน ในด้านการคมนาคม สภาพถนน 4 B (เส้นทางโครงการ) ปัจจุบันผิวจราจรเป็นดิน ฤดูแล้งมี ปัญหาด้านฝุ่น ถดูฝนถนนลื่น ประกอบกับถนนตัดผ่านลำน้ำหลายแห่งซึ่งไม่มีสะพานทำให้การเดินทาง ยากลำบาก พาหนะหลักที่ใช้ในการเดินทางได้แก่ รถจักรยานยนต์ และรถยนต์โดยสารที่ให้บริการจากบ้าน เชียงแมนไปยังบ้านห้วยทรายขาววันละ 3 เที่ยว

- ทรัพยากรในชูมชน : ทรัพยากรสำคัญที่ประชาชนใช้ประโยชน์ ได้แก่ ป่าไม้ สัตว์ป่า ผลผลิตจากป่า และแหล่งน้ำ จากการสอบถามมู้นำชูมชนพบว่า ป่าตามแนวเส้นทางโครงการมีต้นไม้ หลายประเภท เช่น ไม้ประดู่ ไม้ทา ไม้เพา ไม้เต็ง ไม้แคน เป็นต้น สัตว์ป์าที่พบ เช่น เสือ หมี กวาง ลิง ค่าง ชะนี นกต่างๆ เป็นต้น ผลผลิตจากป่าที่ชาวบ้านเก็บมากิน ใช้ และขาย เช่น ไข่มดแดง ไม้สน (สำหรับเป็นเชื้อเพลิง) ปอสา แขม ตาว หวาย หน่อไม้ เห็ด กล้วยไม้ แหล่งน้ำสำคัญ เช่น น้ำสิงห์ ห้วยทรายขาว ห้วยคง ห้วยลืม ห้วยค้อ ห้วยทาก และแม่น้ำโขง เป็นต้น

ในด้านการใช้ที่ดินพบว่าพื้นที่ครอบครองทั้งหมดของหมู่บ้านมากที่สุดประมาณ 10,000 เซกตาร์ น้อยที่สุดประมาณ 250 เฮกตาร์ จำแนกเป็นพื้นที่อยู่อาศัย $2-20$ เชกตาร์ พื้นที่เกษตร $10-500$ เซกตาร์ ที่เหลือเป็น พื้นที่สำรองสำหรับที่อยู่อาศัยและเพื่อการเกษตร พื้นที่ว่างเปล่า และพื้นที่ป่าไม้

ความคิดเห็นต่อการพัฒนาโครงการ: ผู้นำชุมชนทุกบ้านตามแนวเส้นทางโครงการเพ็นด้วยต่อการ พัฒนาโครงการ โดยให้เหตุผลว่าประชาชาชนจะได้รับประโยชน์ในด้านการเดินทางสะดวกขึ้น เพิ่มโอกาสใน การพัฒนาด้านอาชีพ และการค้าขาย ในด้านผลกระทบที่คาดว่าจะได้รับ ได้แก่ การรื้อย้ายบ้านเรือนของ ประชาชนบางส่วน ผลกระทบต่อที่ดินและพืชผล อุบัติเหตุ และความเดือดร้อนรำคาญจากกิจกรรมการ ก่อสร้าง อย่างไร็ก็ตามผู้ำชุมชนมีความเห็นว่าผลกระทบดังกล่าวไม่รุนแรง ประชาชนยินดีที่ให้มีการพัฒนา เส้นทาง โดยขอให้พิจารณาช่วยเหลือด้านการรื้อย้ายบ้านเรือน ชดเชยความสูญูเสียอื่นๆตามแนวทางปฏิบิิิของ รัฐ และดำเนินการตามมาตรการลดผลกระทบสิ่งแวดล้อมอย่างงริงจัง

2.2 ข้อมูลสภาพเศรษฐกิจ-สังคมระดับครัวเรือน

จากการสัมภาษณ์หัวหน้าครัวเรือนหรือผู้แทนจำนวน 100 ราย จำแนกเป็นผู้ให้สัมภาษณ์ที่อยู่ อาศัยในหมู่บ้านตามแนวเส้นทางเขตเมืองหงสา 30 ราย และผู้อยู่อาศัยในเขตเมืองจอมเพชร 70 ราย ข้อมูลที่ สัมภาษณ์ ได้แก่ ข้อมูลทั่วไปของผู้ให้สัมภาษณ์ สภาพเศรษฐกิจของครัวเรือน ความพึงพอใจต่อสภาพความ เป็นอยู่ในปัจจุบัน การรับรู้และความคิดเห็นต่อโครงการ และความคิดเห็นต่อผลกระทบจากการพัฒนา โครงการและมาตรการป้องกันแก้ไขผลกระทบ ผลการสัมภาษณ์สรุปได้ดังนี้

- ข้อมูลทั่วไปของผู้ให้สัมภาษณ์ : ผู้ให้สัมภาษณ์ส่วนใหญ่เป็นเพศชาย (ร้อยละ 86) อายุเฉลี่ย 45 ปี ผู้อยู่อาศัยตามแนวเส้นทางโครงการเขตเมืองหงสาเป็นชนเผ่าลาว ขมุ และม้ง ส่วนผู้ที่อยู่อาศัย ตามแนวเส้นทางโครงการเขตเมืองจอมเพชรเป็นชนเผ่าลาว ขมุ ม้ง ไทดำ และลื้อ การนับถือศาสนาสอดคล้อง กับชนเผ่ากล่าวคือลาวนับถือศาสนาพุทธ ชนเผ่าอื่นๆนับถือผีของแต่ละชนเผ่า ผู้ให้สัมภาษณ์จบการศึกษา ระดับมัธยมศึกษามากที่สุดรองลงมาจบประถมศึกษา ปริญญาตรี และผู้ที่ไม่เคยเข้าเรียน ข้อมูลของผู้ให้ สัมภาษณ์ดังกล่าวแสดงถึงการเป็นตัวแทนผู้ให้สัมภาษณ์ที่ดี สามารถให้ข้อมูลอื่นๆตามวัตถุประสงค์ของ การศึกษาด้านเศรษฐูกิจสังคมได้เป็นอย่างดี

ข้อมูลทั่วไปของผู้ให้สัมภาษณ์

รายการ	เมืองหงสา		เมืองจอมเพชร		รวม	
	จำนวน	ร้อยละ	จำนวน	ร้อยละ	จำนวน	ร้อยละ
จำนวนผู้ให้สัมภาษณ์	30	100.00	70	100.00	100	100.00
1 เพศ	26	$\begin{aligned} & 86.67 \\ & 13.33 \end{aligned}$	6010	$\begin{aligned} & 85.71 \\ & 14.29 \end{aligned}$	8614	$\begin{aligned} & 86.00 \\ & 14.00 \end{aligned}$
2 อายุ	45		45		45	
3 ชนเผ่า						
ขมุ	5	16.67	33	47.14	38	38.00
ม้ง	5	16.67	4	5.71	9	9.00
ไทดำ		0.00	10	14.29	10	10.00
ลาว	20	66.67	22	31.43	42	42.00
ลื้อ			1	1.43	1	1.00
4 การนับถือศาสนา						
ผี	24	80.00	38	54.29	62	62.00
พุทธ	6	20.00	29	41.43	35	35.00
คริสต์			3	4.29	3	3.00
	6	20.00	3	4.29	9	9.00
	14	46.67	28	40.00	42	42.00
	10	33.33	37	52.86	47	47.00
			2	2.86	2	2.00

- สภาพเศรษฐกิจของครัวเรือน : สมาชิกในครัวเรือนมีจำนวน 7 คน เพศหญิง 3 คน และเพศชาย 4 คน ขนาดการถือครองที่ดินเฉลี่ย 2.35 เฮกตาร์ต่อครัวเรือน จำแนกเป็นที่ดินอยู่อาศัย 0.33 เฮกตาร์ต่อครัวเรือนและที่ดินสำหรับการผลิต 2.02 เฮกตาร์ต่อครัวเรือน ครัวเรือนส่วนใหญู่ประกอบอาชีพ หลักด้าน เกษตรกรรม (ร้อยละ 83) ส่วนที่เหลือประกอบอาชีพพนักงานรัฐ (ทหาร และครู) และค้าขาย ทั้งนี้ เกือบครึ่งหนึ่งของครัวเรือนที่ให้สัมภาษณ์ไม่มีอาชีพรอง (ร้อยละ 43) ส่วนผู้ที่ประกอบอาชีพรอง มี 3 อาชีพ คือเก็บของป่า เลี้ยงสัตว์ และค้าขาย กิจกรรมการเพาะปลูกที่พบในพื้นที่โครงการ ได้แก่ ข้าว ข้าวโพด ผักต่างๆ

ไม้ยืนต้น (สัก ยางพารา) มันสัมปะหลัง งา เดือย และยาสูบ เกษตรกรปลูกข้าวมากกว่าพืชอื่นๆ โดยมีครัวเรือน ที่ปลูกข้าวและได้ผลผลิงเพียงพอต่อการบริ โภคตลอดปีร้อยละ 77 ของครัวเรือนที่ให้สัมภาษณ์

จากการประกอบอาชีพหลักและอาชีพรองข้างต้นเกิดเป็นรายได้ของครัวเรือนประมาณ 19 ล้านกีบ ต่อครัวเรือนต่อปีสำนรับครัวเรือน (2.8 ล้านกีบต่อคนต่อปี)ในเขตเมืองหงสาและประมาณ 21 ล้านกีบต่อ ครัวเรือนต่อปี (3.7 ล้านกีบต่อคนต่อปี) สำหรับครัวเรือนในเขตเมืองจอมเพชร ซึ่งสูงกว่าเส้นความยากจนของ สปป.ลาว (85,000 กีบต่อคนต่อเดือน หรือ 1.02 ล้านกีบต่อคนต่อปี)

สภาพเศรษฐกิจของครัวเรือน

การประกอบอาชีพของครัวรเรือน

รายการ	เมืองหงสา		เมืองจอมเพชร		รวม	
	จำนวน	ร้อยละ	จำนวน	ร้อยละ	จำนวน	ร้อยละ
จำนวนผู้ให้สัมภาษณ์	30	100.00	70	100.00	100	100.00
1. อาชีพหลักของครัวเรือน เกษตรกรรม พนักงานรัฐ ทหาร ครู ค้าขาย บริการ ขับรถ	$\begin{array}{r} 25 \\ 5 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 83.33 \\ 16.67 \\ 0.00 \\ 0.00 \end{array}$	58 4 7 1	$\begin{array}{r} 82.86 \\ 5.71 \\ 10.00 \\ 1.43 \end{array}$	$\begin{array}{r} 83 \\ 9 \\ 7 \\ 1 \end{array}$	$\begin{array}{r} 83.00 \\ 9.00 \\ 7.00 \\ 1.00 \\ \hline \end{array}$
2. อาชีพรองของครัวเรือน ไม่มี เก็บของป่า เลี้ยงสัตว์ ค้าขาย	17 5 7 1	$\begin{gathered} 56.67 \\ 16.67 \\ 23.33 \\ 3.33 \end{gathered}$	$\begin{array}{r} 26 \\ 26 \\ 16 \\ 2 \end{array}$	$\begin{array}{r} 37.14 \\ 37.14 \\ 22.86 \\ 2.86 \end{array}$	$\begin{aligned} & 43 \\ & 31 \\ & 23 \\ & 3 \end{aligned}$	$\begin{array}{r}43.00 \\ 31.00 \\ 23.00 \\ 3.00 \\ \hline\end{array}$
3. กิจกรรมการเพาะปลูกของครัวเรือน ข้าว มันสัมปะหลัง งา เดือย ยาสูบ ข้าวโพด ไม้ยืนต้น ยางพารา สัก ผัก ผักกาด หมอ กระเทียม	16 5 4 2 0 14 0 0	$\begin{array}{r} 38.10 \\ 11.90 \\ 9.52 \\ 4.76 \\ 0.00 \\ 33.33 \\ 0.00 \\ 0.00 \end{array}$	41 5 6 6 2 18 10 14	$\begin{array}{r} 40.20 \\ 4.90 \\ 5.88 \\ 5.88 \\ 1.96 \\ 17.65 \\ 9.80 \\ 13.73 \end{array}$	57 10 10 8 2 32 10 14	$\begin{array}{r}39.86 \\ 6.99 \\ 6.99 \\ 5.59 \\ 1.40 \\ 22.38 \\ 6.99 \\ 9.79 \\ \hline\end{array}$
4. การผลิตข้าวเพื่อบริ โภคของครัวเรือน พอต่อการบริโภคตลอดปี ไม่เพียงพอตลอดปี	23 7	$\begin{aligned} & 76.67 \\ & 23.33 \end{aligned}$	54 16	$\begin{aligned} & 77.14 \\ & 22.86 \end{aligned}$	77 23	77.00 23.00

- ความพึงพอใจต่อสภาพความเป็นอยู่ในปัจจุบัน : ผู้ให้สัมภาษณ์ที่อยู่อาศัยตาม แนวเส้นทางโครงการในเขตเมืองหงสามีความพึงพอใจต่อสภาพความเป็นอยู่ในบัจจุบันน้อยกว่าผู้อยู่อาศัยตาม แนวเส้นทางโครงการเขตเมืองจอมเพชร (ร้อยละ 43.33 และร้อยละ 81.43) โดยเหตุผลที่พอใจได้แก่ มีรายได้ เพียงพอต่อรายจ่าย มีที่ดินอยู่อาศัยและที่ดินทำการเกษตร การเดินทางสะดวก และชาวบ้านสามัคคีกัน เหตุผลที่ ไม่พอใจได้แก่ พื้นที่ทำการเกษตรไม่พอ การเดินทางไม่สะดวก รายได้น้อย และขาดแคลนน้ำกินน้ำใช้

ความพึ่งพอใจต่อสภาพความเป็นอยู่ในปัจจุบัน

รายการ	เมืองหงสา		เมืองจอมเพชร		รวม	
	จำนวน	ร้อยละ	จำนวน	ร้อยละ	จำนวน	ร้อยละ
จำนวนผู้ให้สัมภาษณ์	30	100.00	70	100.00	100	100.00
พอใจ	13	43.33	57	81.43	70	70.00
มีรายได้พอต่อค่าใช้จ่าย	3	23.08	26	45.61	29	41.43
มีที่อยู่อาศัยและที่คินทำการเกษตร	2	15.38	9	15.79	11	15.71
การเดินทางสะดวก	4	30.77	19	33.33	23	32.86
ชาวบ้านสามัคคีกัน	4	30.77	3	5.26	7	10.00
ไม่พอใจ	17	56.67	13	18.57	30	30.00
ขาดแคนน้ำกินน้ำใช้	1	5.88	1	7.69	2	6.67
พื้นที่ทำการเกษตรไม่พอ	8	47.06	4	30.77	12	40.00
รายได้น้อย	0	0.00	4	30.77	4	13.33
การเดินทางไม่สะดวก	8	47.06	4	30.77	12	40.00

- การรับรู้ข้อมูลโกรงการและข้อมูลที่ต้องการทราบ: ผู้ให้สัมภาษณ์ประมาณ ครึ่งหนึ่งเยยได้รับทราบว่าจะมีการปรับปรุงแนวเส้นทางจากเมืองหงสามายังเมืองออมเพชร อย่างไรก็ตามทั้ง ผู้ที่เคยรับทราบและะู้ที่ไม่เคยรับทราบเกี่ยวกับการพัฒนาโครงการล้วนต้องการรับทราบข้อมูลโครงการ เพิ่มเติม ได้แก่ ความกว้าง ความยาว แผนการก่อสร้าง (ปีที่จะเริ่มก่อสร้างและแล้วเสร็จ) ผลกระทบต่อที่ดิน และบ้านเรือนของประชาชนและมาตรการชดเชยต่อผลกระทบ

การรับรู้โครงการและข้อมูลที่ต้องการทราบ

รายการ	เมืองหงสา		เมืองจอมเพชร		รวม	
	จำนวน	ร้อยละ	จำนวน	ร้อยละ	จำนวน	ร้อยละ
จำนวนผู้ให้สัมภาษณ์	30	100.00	70	100.00	100	100.00
1. การรับรู้ข้อมูลโครงการ						
รับรู้	22	73.3	29	41.43	51	51.00
ไม่เคยรับรู้	8	26.7	41	58.57	49	49.00
2. ข้อมูลโครงการที่ต้องการรับทราบ						
ลักษณะโครงการ	18	60.0	26	37.14	44	44.00
แผนการก่อสร้าง	6	20.0	24	34.29	30	30.00
ผลกระทบต่อที่ดินและบ้านเรือน	3	10.0	8	11.43	11	11.00
การชดเชยทรัพย์สิน	3	10.0	12	17.14	15	15.00

- ความคิดเห็นต่อการพัฒนาโครงการ : ผู้ให้สัมภาษณ์ทั้งหมดยินดีหรือเห็นด้วยต่อ การพัฒนาโครงการ เหตุผลหลักคือการพัฒนาโครงการจะทำให้การเดินทางและการขนส่งสะดวกขึ้น ผลกระทบน้อยเนื่องจากเป็นการปรับปรุงแนวเส้นทางที่มีอยู่เดิม

ความคิดเห็นต่อการพัฒนาโครงการ

รายการ	เมืองหงสา		เมืองจอมเพชร		รวม	
	จำนวน	ร้อยละ	จำนวน	ร้อยละ	จำนวน	ร้อยละ
จำนวนผู้ให้สัมภาษณ์	30	100.00	70	100.00	100	100.00
ยินดี/ห็นด้วย ไม่ยินดี/ไม่เห็นด้วย	30	100.00	70	70.00	100	100.00
	0	0.00	0	0.00	0	0.00
การเดินทางและขนส่งสะดวก	30	100.00	68	68.00	98	98.00
ผลกระทบน้อย	0	0.00	1	1.00	1	1.00
เศรษฐกิจชุมชนดีขึ้น	0	0.00	1	1.00	1	1.00

- ความคิดเห็นต่อผลกระทบจากการพัฒนาโครงการและมาตรการลดผลกระทบ : ผู้ให้สัมภาษณ์ร้อยละ 34 มีความคิดเห็นว่าในระยะก่อสร้างโครงการจะไม่มีผลกระทบต่อสภาพเศรษฐูกิจ และ สังคมของชุมชน กลุ่มที่มีความคิดเห็นว่าจะมีผลกระทบในระยะก่อสร้าง (ร้อยละ 66) คาดว่าจะได้รับ ผลกระทบในด้านการรื้อย้ายบ้านเรือน และผลกระทบจากกิจกรรมก่อสร้าง เช่น เสียงดัง ฝุ่น น้ำขุ่น อุบัติเหตุ

กีดขวางทางเข้าออก จึงเสนอมาตรการลดผลกระทบโดยให้ดำเนินการตามมาตรการป้องกันและแก้ไขด้าน สิ่งแวดล้อมและมาตรการด้านความปลอดภัยอย่างจริงจัง และช่วยเหลือผู้ที่ต้องสูญเสียที่ดินและรื้อย้าย บ้านเรือนอย่างเหมาะสม

ส่วนในระยะดำเนินการ ผู้ให้สัมภาษณ์ร้อยละ 46 คาดว่าจะไม่ได้รับผลกระทบทางลบ อีกร้อยละ 54 แสดงความคิดเห็นว่าการพัฒนาโครงการจะทำให้การเดินทางและการขนส่งสะดวกขึ้น ในขณะเดียวกันอาจ เกิดอุบัติเหตุเพิ่มขึ้นจากปริมาณจราจรที่เพิ่มขึ้น และยังมีส่วนที่ทำให้เกิดการทำลายทรัพยากรป่าไม้และสัตว์ป่า ที่อยู่ใกล้เคียงแนวเส้นทาง มาตรการป้องกันแก้ไขผลกระทบที่เสนอได้แก่ มีสัญญาณจราจรอย่างเพียงพอ อบรมให้ความรู้เรื่องกฎจราจรแก่ชาวบ้านเพื่อความปลอดภัย ปลูกหญ้าเพื่อป้องกันการพังทลายของดิน และ ปลูกต้นไม้เพื่อเป็นแนวกันชนระหว่างถนนกับป่าไม้

ความคิดหห์นต่อผลกระทบและมาตรการข้องกันและแก้ไขผลกระทบ

รายการ	เมืองหงสา		เมืองจอมเพชร		รวม	
	จำนวน	ร้อยละ	จำนวน	ร้อยละ	จำนวน	ร้อยละ
จำนวนผู้ให้สัมภาษณ์	30	100.00	70	100.00	100	100.00
1. ผลกระทบในระะะก่อสร้าง						
ไม่มีผลกระทบ						
คีคขวางทางข้า						
กดขวางทางเข้าออก	5	16.67	1	1.43	6	6.00
น้ำขุ่น	1	3.33	0	0.00	1	1.00
ฝุ้นละออง	5	16.67	10	14.29	15	15.00
เสียงคัง	5	16.67	8	11.43	13	13.00
อุบัติเหตุจากกิจกรรมการก่อสร้าง	0	0.00	4	5.71	4	4.00
สูญเเสียที่ดิน	3	10.00	5	7.14	8	8.00
ริ้อยาขบบ้านเรือน	4	13.33	14	20.00	18	8.00
จ้างแรงงานในท้องถิ่น						
มาตรการป้องกันและแก้ไขผลกระทบ	0	0	1	1.43	1	1.00
ดำนินการตามมาตรการด้านสึ่งแวดล้อมอย่างเคร่งครัด	11	36.67	15	21.43	26	26.00
เผยแพร่ข้อมูลให้ประชาชนรับทราบล่วงหน้า	2	6.67	5	7.14	7	7.00
มีมาตรการด้านความปลอดภัขจากกิจกรรมก่อสร้าง	5		21			
		16.67	21	30.00	26	26.00
วางกฏระเบียบสำหรับคนงานต่างถิ่น	4	13.33	3	4.29	7	7.00
กำหนคเวลาทำงานเฉพาะตอนกลางวัน	2	6.67	3	4.29	5	5.00
ชดเชยความเสียหาขอย่างเหมาะสมและเป็นธรรม	5	16.67	20	28.57	25	25.00
จ้างแรงงานในท้องถิ่น	1	3.33	3	4.29	4	4.00
2. ผลกระทบในระยะดำนินการ						
ไม่มีผลกระทบ	13	43.33	33	47.14	46	46.00
สูญเสียทรัพยากรธรรมชาติ เช่นป่าไม้ สัตว์ป่า	6	20.00	4	5.71	10	10.00
อุบัติเหตุเพิ่มขึ้นจากปริมาณจราจรที่เพิ่มขึ้น	0	0.00	15	21.43	15	15.00
การเดนทางและการขนสงสะดวก	11	36.67	18	25.71	29	29.00
มาตรการป้องกันและแถ้ไขผลกระทบ						
มีสัญญานจราจรเพียงพอ	18	60.00	40	57.14	58	58.00
อบรมให้ความรู้เรื่องกฏจราจรแก่คนในชุมชน	10	33.33	21	30.00	31	31.00
ปลูกหญ้าหรือต้นไม้เพื่อป้องกันการกัดเซาะและเป็นแนวกันชร	2	6.67	${ }_{9}$	12.86	11	31.00 11.00
ถนนกับป่าไม้						

- ข้อคิดเห็นและข้อเสนอแนะเพิ่มเติม : ผู้ให้สัมภาษณ์มีข้อคิดเห็นและ

 ข้อเสนอแนะเพิ่มเติมเกี่ยวกับการก่อสร้างเส้นทางให้ได้มาตรฐาน (ร้อยละ 63) ก่อสร้างโครงการ โดยเร็ว (ร้อย ละ 12) ประชาสัมพันธ์โครงการให้ประชาชนตามแนวเส้นทง โครงการทราบล่วงหน้า (ร้อยละ 11) มีร่องระบายน้ำและมีเขตทางที่ชัดเจน (ร้อยละ 8) ชดเชยที่คินและบ้านเรือนของประชาชนที่ถูกผลกระทบอย่างเหมาะสม (ร้อยละ 6)

> ข้อคิดเห็นและข้อเสนอแนะ

6.4.15 การชดเชยทรัพย์สิน อพยพโยกย้าย

(1) วิธีการศึกษา

- สำรวจภาคสนามเพื่อสังเกตการณ์สภาพการตั้งบ้านเรือนสองฟากแนวเส้นทาง โครงการ
- จดบันทึกตำแหน่ง และบันทึกภาพบ้านและสิ่งปลูกสร้างที่ตั้งงอู่ในเขตทาง (ภายใน ระยะ 25 เมตรจากศูนยย์กลางแนวเส้นทางออกไปทั้งสองฟาก)
- ประเมินผลกระทบเบื้องต้นด้านการชดเชยทรัพย์สินและอพยพโยกย้าย
(2) ผลการศึกษา

จากการสำรวจภาคสนามตามแนวเส้นทางโครงการจากบ้านนาปุง เมืองหงสา แขวงไซยะบุรี ถึง บ้านเชียงแมน เมืองจอมเพชร แขวงหลวงพระยาง ในระหว่างวันที่ $21-26$ มีนาคม 2554 และวันที่ $22-26$ พฤษภาคม 2554 พบว่าแนวถนนโครงการ (ทางหลวงสาย 4B) มีความกว้างประมาณ 4 เมตร ตัดผ่านพื้นที่ป่าไม้ และพื้นที่เกษตรกรรมเป็นส่วนใหญู่ มีชุมชนกระจาตตัวอยู่สองฟากแนวเส้นทาง จำนวน 21 หมู่บ้าน ส่วนใหญ่่ มีการตั้งบ้านเรือนอชู่ิิดขอบทาง (รูปที่ 6.4-24)

ในการพัฒนาโครงการเป็นทางหลวงแห่งชาติ ซึ่งตามกฎหมายทางหลวง ปี ค.ศ. 1999 มาตรา 20 ระบุไว้ว่าขอบเขตทางหลวง (คือ พื้นที่ถนนทั้งหมด ได้แก่ ผิวถนน ไหล่ถนน ทางคนเดินร่องระบายน้ำ ลาดคัน

ทาง และแนวสงวนเพื่อความปลอดภัย) จะต้องมีความกว้างจากจุดกึ่งกลางถนนออกไปด้านละ 25 เมตร ส่งผล กระทบต่อที่ดินทำกินและที่อยู่อาศัยที่อยู่ในขอบเขตดังกล่าว จำเป็นต้องมีการชดเชยความเสียหายและอพยพ โยกย้ายตามกฎหมายและระเบียบที่เกี่ยวข้อง ได้แก่ กฎหมายที่ดิน ค.ศ. 1997 กฎหมายทางหลวง ค.ศ. 1999 และ ประกาศสำนักนายกรัฐมนตรี เลขที่ 192/นย ลงวันที่ 7 กรกฎาคม 2005 ว่าด้วยการชดเชยความเสียหายที่เกิดขึ้น จากโครงการพัฒนา (ดังรายละเอียดโดยสรุปในหัวข้อ 5.3)

จำนวนบ้านเรือนและอาคารอื่น ๆ ที่ได้รับผลกระทบจากการพัฒนาโครงการ สรุปได้ดังตารางที่
6.4-26
บ้านเรือนที่ต้องโยกย้ายออกจากเขตทาง สามารถจำแนกออกเป็น 9 รูปแบบ ได้แก่รูปแบบที่ 1 บ้านชั้นเดียวใต้ถุนสูง สร้างด้วยไม้ไผ่ มุงหญ้าคารูปแบบที่ 2 บ้านไม้ชะนนเดียวใต้ถุนสูง หลังคาสังกะสีรูปแบบที่ 3 บ้านไม้ไต้ถุนสูง มุงกระเบื้อง
รูปแบบที่ 4 บ้านไม้ชั้นเดียวติดดิน หลังคาสังกะสี
รูปแบบที่ 5 บ้านไม้ชั้นเดียวติดดิน หลังคามุงกระเบื้อง
รูปแบบที่ 6 บ้านคอนกรีตชั้นเดียวติดดิน หลังคาสังกะสี
รูปแบบที่ 7 บ้านคอนครีตชั้นเดียวติดดิน หลังคามุงกระเบื้อง
รูปแบบที่ 8 บ้านสองชั้น ครึ่งตึกครึ่งไม้ หลังคาสังกะสี
รูปแบบที่ 9 บ้านสองชั้น ครึ่งตึกครึ่งไม้ หลังคามุงกระเบื้อง
(ภาพที่ $6.4-25$ แสดงลักษณะบ้านเรือนที่ต้องรื้อย้ายออกจากเขตทาง รูปแบบที่ 1-9)
(ภาพที่ 6.4-26 แสดงอาคารอื่น ๆ ที่ต้องรื้อย้ายออกจากเขตทาง)

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพซร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปที่ 6.4-24 : สภาพการตั้งบ้านเรือนตามแนวเส้นทาง
รายงานขั้นสุดท่าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมีองจอมเพชร หลวงพระบาง) สาธารณรัธูประชาธิปไตยประชาชนลาว (สปป.ลาว)

รูปแมบที่ 1 บ้านชั้นเดียวใดัดุนสูง สร้างดัวยไม้ไผ่ มุงหญ้าคา

รูปแบบที่ 3 ข้านไม้ใต้ถุนสูง มุงกระเบื้อง

รูปแมบที่ 5 ข้านไม้ชันแดียวติดดิน หลังคามุงกระเบื้อง

รูปแมมที่ 2 บ้านไมัั้นเดียวใต้ถุนสูง หลังคาสังกะสี

รูมแมบที่ 4 ข้านไมัชั้นเดียวติดดิน หลังคาสังกะสี

รูปแบบที่ 6 บ้านคอนกรืตซั้นเดียวติดดิน นลังคาสังกะสี

รูปที่ 6.4-25
: แสดงลักษณะบ้านเรือนที่ต้องรื้อย้ายออกจากเขตทาง

โครงการศึกษาความเป็นไปได้และออกแบบเบิ้องต้น

โครงการพัลแนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประขาซนลาว (สปป.ลาว)

รูปแบมที่ 7 ม้านคอนกรีตั้นเดียวติดดิน
หลังคามุงกระเบื้อง

รูปแบบที่ 9 บ้านสองขั้น ครึ่งตึกครึ่งไม้ หลังคามุงกระเบื้อง

รูปแบบที่ 8 บ้านสองชั้น ครึ่งตึกครึ่งไม้ หลังคาสังกะส็

หอประโุมมประจำหมู่บ้าน

พ้องการรัริวิสหกิจไฟฟ้า

เรือนพักทหาร

ที่ทำกรหหู่บ้าน

โรงเรียนประถม

ปั้มน้ำมัน

รูปที่ 6.4-26 : อาคาร/สิ่งปลูกสร้างอื่น ๆ ที่ต้องรื้อย้ายออกจากเขตทาง

10P1975/Thanaphon/31-05-54//4ระルทบ゙น ppt

6.5 การประเมินผลกระทบสิ่งแวดล้อมเบื้องต้นโดยการใช้รายการข้อมูลด้านสิ่งแวดล้อม (Environmental Checklist)

การประเมินผลกระทบสิ่งแวดล้อมเบื้องต้นโดยการใช้รายการข้อมูลค้านสิ่งแวดล้อม (Environmental Checklist) คำเนินการ โดยรวบรวมข้อมูล 3 ส่วนคือ

1) ลักษณะโครงการ ได้แก่ ที่ตั้ง ประเภท รายละะอียดของโครงการ เช่น แนวเส้นทาง ความยาว ความกว้าง ความโค้ง ค่าลงทุน สภาพบัจจุบันของแนวเส้นทางโครงการ และUltimate stage ของโครงการและ โครงข่ายการคมนาคมที่เกี่ยวข้อง
2) สภาพสิ่งแวดล้อมปัจจุบัน ได้แก่ จุทกวิทยา การกัดเซาะและตกตะกอน การถางป่า นิเวศวิทยาทางบก/นิเวควิทยาทางน้ำ โครงการสำคัญืื่นๆ ในพื้นที่ สภาพสังคม-ศศรษฐูคิจ วัฒนธรรม และ คาสนา ประเด็นสำคัญอื่นๆ ทางด้านสิ่งแวดล้อม และสังคม
3) การออกแบบด้านวิศวกรรม ได้แก่ การขนส่งวัสดุก่อสร้าง การถางป่าเปิดหน้าดิน (พื้นที่ ที่ตั้ง ปริมามดิน/หินที่จุด สถานที่เก็บกองวัสดุ) งานถมคันทาง (พื้นที่ ที่ตั้ง ปริมาณและประเภทของวัสดุที่ใช้ ถม) โครงสร้างระบายน้ำ (ความเพืยงพอ ขนาด ที่ตั้ง) วิธที่ใช้ในการก่อสร้างฐานรากและ Super Structures

จากนั้นทำการประเมินผลกระทบสิ่งแวดล้อมเบื้องต้น โดยใช้การพิจารณาข้อมูลด้านสิ่งแวดล้อม (Environmental Checklist) ที่ปรับปรุงขึ้นสำหรับใช้ในโครงการนี้ โดยอ้างอิงจากรายงานตรวจสอบด้าน สิ่งแวคล้อมในคู่มือค้านสิ่งแวคล้อม (Environmental Handbook) ของ UR Department of Transportation, FHWA, March 1985 รายการตรวจสอบด้านสิ่งแวดล้อมสำหรับโครงการก่อสร้างถนน (Environmental Checklist for Road construction Projects) ของ Japan Bank for International Cooperation: JBIC และรายการประเมิน สิ่งแวคล้อมอย่างเร็ว (Rapid Environmental Assessment (REA) Checklist) ของ Asian Development Bank โดย เสนอผลในรูปตาราง ระบุรายการปัจอัยด้านสิ่งแวดล้อม สภาพสิ่งแวดล้อมปัจจุบันในแต่ละรายการ การ ประเมินผลกระทบเบื้องต้น (ไม่มี/ีี) ระดับผลกระทบ (ต่ำ ปานกลาง สูง) และมาตรการป้องกันผลกระทบ เบื้องต้น ดังรายละเอียดในตารางที่ $6.5-1$

ตรรงที่ 6.5 -1 รายการข้อมูลทางด้านสิ่งแวดล้อม (Environmental Checklist) สำหรับการประเมินด้านสิ่งแวดล้อมเบื้องต้น

						Nombumisions	
	un	\checkmark					
- Kitum							
-nรม土 \%h:							
		\checkmark	\checkmark				
	\checkmark						
\%		\checkmark		\checkmark		,	
\% mambinem							
- .							
		\checkmark	\checkmark				
		\checkmark	\checkmark				
***) vombin							
	\checkmark						
		\checkmark		\checkmark			
$\square-$							
							momemin
\cdots						5meme	
		\checkmark	\checkmark				
	\checkmark						
- \quad nommamat							
\% ${ }^{\text {a }}$		\checkmark	\checkmark				
							mammentumer
 		\checkmark	\checkmark				
virenaturwnerittont							\%
"nammmmpanm		\checkmark	\checkmark	-			ammina
						Minemer	
		-	\checkmark				
		\checkmark	\checkmark				
0 dumanimat							
Unitatin		\checkmark	\checkmark			,	
		\checkmark	\checkmark				
							...nmammiomimm
				\cdots		- 3.3	-3.em:
		\checkmark		,			\%
		\checkmark	\checkmark				
		\checkmark	\checkmark				
	\checkmark						
				-			
$\square-\square$							
$\square-$							
\square							
	\checkmark						
		\checkmark			\cdots	mbencisamm	
		\checkmark		\checkmark			
		\checkmark		*			
	\checkmark						Eivaminnum
	\checkmark	\checkmark		\checkmark			,
	\checkmark						\%mmenumbinwem
							Timuen
$\square-$							
\square							
\square				,			
							comex
\square							
\square							
							mathemen
		\checkmark	\checkmark				
						边	
		\checkmark	\checkmark				
undvem ubmememe							
		\checkmark		.			
						-ammenemem	
		\checkmark	\checkmark				
		\checkmark		.			
, vinmmilmer							
, mimmmanmen		\checkmark	\checkmark				
		\checkmark	\checkmark				
		\checkmark	\checkmark				

บทที่ 7 งานประชาสัมพันธ์ และการมีส่วนร่วมของประชาชน

7.1 บทนำ

งานประชาสัมพันธ์และการมีส่วนร่วมของประชาชนในกระบวนการศึกษาผลกระทบสิ่งแวดล้อม เบื้องต้นของโครงการ ดำเนินตามดำรัสว่าด้วยการประเมินผลกระทบสิ่งแวดล้อม ลงวันที่ 16 กุมภาพันธ์ 2010 ซึ่งมีหมวดและมาตราที่เกี่ยวข้องดังนี้

หมวคที่ 2 การมีส่วนร่วม มาตรา 7 สิทธิและหน้าที่ของผู้ได้รับผลกระทบจากโครงการ ในการที่จะได้ รับูู้ข้อมูลข่าวสาร ให้ข้อมูลเกี่ยวกับสภาพสิ่งแวดล้อมและสังคมของท้องถิ่น ได้รับทราบผลการศึกษาผลกระทบ สิ่งแวดล้อม มาตรการป้องกันและลดผลกระทบสิ่งแวดล้อม แผนปญิบัิิการป้องกันและลดผลกระทบสิ่งแวดล้อม และแผนติดตามตรวจสอบผลกระทบสิ่งแวคล้อม เข้าร่วมการประชุมปริกษาหารือ และเสนอการแก้ไขปัญหา สิ่งแวดล้อมและสังคม

หมวดที่ 2 มาตรา 8 ขั้นตอนการมีส่วนร่วมองค์การทรัพยากรน้ำและสิ่งแวดล้อม องค์การปกครอง ท้องถิ่น หน่วยงานที่รับผิดชอบในการพัฒนาโครงการ และผู้พัฒนาโครงการ มีหน้าที่รับผิดชอบร่วมกันในการ ดำเนินกระบวนการมีส่วนร่วมของประชาชนผู้ได้รับผลกระทบจากโครงการและผู้มส่วนร่วมอื่นๆ โดยสอคคล้อง กับขั้นตอนกระบวนการของการศึกษาผลกระทบสิ่งแวดล้อมเบื้องต้นหรือการประเมินผลกระทบสิ่งแวดล้อม ทั้ง ในระยะเก็บรวบรวมข้อมูลและระยะจัดทำรายงานการศึกษาผลกระทบสิ่งแวดล้อม ในระยะเตรียมการก่อสร้าง ระยะก่อสร้างและระยะดำเนินโครงการ

หมวดที่ 3 การศึกษาสิ่งแวดล้อมเบื้องต้น มาตราที่ 9 ได้ระบุถึงหน้าที่ขององค์การทรัพยากรน้ำและ สิ่งแวดล้อม องค์การปกครองส่วนท้องถิ่น หน่วยงานที่รับผิดชอบในการพัฒนาโครงการ หน่วยงานที่เกี่ยวข้อง และผู้พัฒนาโครงการ โดยองค์การทรัพยากรน้ำและสิ่งแวดล้อมมีหน้าที่ออกใบอนุญาตด้านสิ่งแวดล้อม เพื่อ รับรองรายงานการศึกษ่สิ่งแวดล้อมเบื้องต้น เข้าร่วมการสำรวจภาคสนาม และเข้าร่วมการประชุมปรึกษาหารือ ขั้นเมือง โดยสามารถมอบหมายให้หน่วยงานทรัพยากรน้ำและสิ่งแวดล้อมของแขวงหรือนครเข้าร่วมแทนได้ องค์การปกครองส่วนท้องถิ่น มีหน้าที่ออกใบอนุญาตด้านสิ่งแวดล้อม เพื่อรับรองรายงานการศึกษาสิ่งแวดล้อม เบื้องต้น บนพื้นฐานการขออนุญาตจากองค์การทรัพยากรน้ำและสิ่งแวดล้อม นอกจากนี้มีหน้าที่ให้ความร่วมมือ ในการอำนวยความสะดวกแก่ผู้พัฒนาโครงการในการเก็บรวบรวมข้อมูล และการดำเนินกระบวนการ ปรึกษาหารือกับประชาชนผู้ได้รับผลกระทบ รวมทั้งให้ความร่วมมือในการประชาสัมพันธ์เผยแพร่ข้อมูลต่อ ประชาชนเพื่อให้มีความเข้าใจเกี่ยวกับวัตถุประสงค์ของโครงการ ผลประโชชน์ที่จะได้รับ ผลกระทบด้าน สิ่งแวดล้อมและสังคมที่อาจจะเกิดขึ้นจากการพัฒนาโครงการ

หน่วยงานที่รับผิดชอบในการพัฒนาโครงการมีหน้าที่ในการอำนวยความสะดวกในการสำรวจข้อมูล ร่วมประชุมปรึกษาหารือ และทบทวนรายงานการศึกษาสิ่งแวดล้อมเบื้องต้น รวบรวมความคิดเน็นต่างๆจากภาด ส่วนที่เกี่ยวข้อง ส่วนหน่วยงานที่เกี่ยวข้องมีหน้าที่เสนอความคิดเห็นด้านวิชาการต่อรายงานการศึกษาสิ่งแวดล้อม เบื้องต้น

สำหรับผู้พัฒนาโครงการ มีหน้าที่ศึกษาสภาพสิ่งแวดล้อมและสังคม ประเมินผลกระทบที่คาคว่าจะ เกิดขึ้นจากการพัฒนาโครงการ โดยใช้ข้อมูลจากหน่วยงานที่เกี่ยวข้อง การสำรวจภาคสนามและการปร็กษาหารือ กับประชาชน ดำเนินการมีส่วนร่วมตามแนวทางในดำรัสนี้ ประสานงานกับองค์การปกครองท้องถิ่น หน่วยงานที่ รับผิดชอบในการพัฒนาโครงการ เพื่อจัดประชุมเผแแร่ข้อมูลขั้นบ้าน จัดประชุมปรึกษาหารือขั้นบ้าน และจัด ประชุมปรึกษาหารือขั้นเมือง เพื่อพิจารณาเห็นชอบต่อร่างรายงานการศึกษาผลกระทบสิ่งแวดล้อมเบื้องต้น และ ต้องนำบันทึกการประชุบปรึกษาหารือทุกครั้งเสนอไว้ในรายงานด้วย

7.2 วัตถุประสงค์

การประชาสัมพันธ์และการมีส่วนร่วมของประชาชนมีวัตถุประสงค์ดังนี้

- เพื่อเผยแพร่ข้อมูลโครงการให้ทุกภาคส่วนที่เกี่ยวข้องได้รับทราบอย่างทั่วถึง
- เพื่อให้เกิดการมีส่วนร่วมในการรับรู้ และร่วมแสดงความคิดเห็น ต่อการศึกษาสิ่งแวดล้อม เบื้องต้น

7.3 พื้นที่ดำเนินงานและกลุ่มเป้าหมาย

พื้นที่ตามแนวเส้นทางโครงการครอบคลุม 5 หมู่บ้านของเมืองหงสา แขวงไซยะบุรี และ 16 หมู่บ้าน ของเมืองจอมเพชร แขวงหลวงพระบาง ดังนี้

แขวง	เมือง	หมู่ข้าน
ไซยะบุรี	หงสา	นาปุ่ง
		น้ำแก่น
		ดอนใหม่
		ปากห้วยยาง
		พูสามพัน
หลวงพระบาง	จอมเพชร	หลัก 62
		ห้วยทราขขาว
		สามพันไซ

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

แขวง	เมือง หมู่บ้าน	
		นาแล
		นาไฮ
		นางิ้ว
		ห้วยขาน
		ห้วยทาก
		ดอนไซาง
		ห้วยปากข้อ
		หนองจอง (จองและหนองพุ)
		ปคากลึง
		โพกสว่าง
		เพลาด (ลาดโคกและท่าโพ)

กลุ่มเป้าหมายสำหรับการดำเนินการด้านการมีส่วนร่วมของประชาชน ภายใต้โครงการนี้ ประกอบด้วย

- ประชาชนผู้ได้รับผลกระทบโดยตรงจากการพัฒนาโครงการ
- หน่วยงานรัฐ ได้แก่
- องค์การทรัพยากรน้ำและสิ่งแวดล้อม หน่วยงานทรัพยากรน้ำและสิ่งแวดล้อมระดับแขวง และเมือง
- องค์การปกครองส่วนท้องถิ่น เช่น เจ้าแขวง หัวหน้าห้องว่าการแขวง เจ้าเมือง และ หัวหน้าห้องว่าการเมือง เป็นต้น
- หน่วยงานที่รับผิดชอบการพัฒนาโครงการ ได้แก่ กรมขัวทาง โยฐาธิการและขนส่งแขวง และโิยาธิการและขนส่งเมือง
- หน่วยงานที่เกี่ยวข้อง เช่น ป่าไม้และกสิกรรมแขวงและเมือง ที่ดินแเขวงและเมือง แผนงาน และการลงทุนแขวงและเมือง สาธารณสุขแขวงและเมือง และสหพันธ์แม่หญิงลาว เป็นต้น

7.4 กิจกรรมประชาสัมพันธ์และการมีส่วนร่วมของประชาชน

เพื่อให้กลุ่มเป้าหมายเกิดการรับรู้ข้อมูลโครงการและการมีส่วนร่วมในการพัฒนาโครงการ รวมทั้งมี การดำเนินงานที่สอดคล้องกับดำรัสว่าด้วยการประเมินผลกระทบสิ่งแวดล้อม ลงวันที่ 16 กุมภาพันธ์ 2010 จึง กำหนดกิจกรรมดังนี้
(1) การเผยแพร่ข้อมูล

ข้อมูลที่เผยแพร่ต่อกลุ่มเป้าหมายในการดำเนินการด้านการมีส่วนร่วมของประชาชน ได้แก่ รายละเอียดลักษณะโครงการ แผนการดำเนินงาน ลักษณะผลกระทบที่คาดว่าจะเกิดขึ้นจากการพัฒนาโครงการ มาตรการลดผลกระทบและมาตรการติดตามตรวจสอบผลกระทบ โดยจัดทำในลักษณะเอกสารสรุปภาษาลาว แจกจ่ายในกิจกรรมการประชุมปรึกษาหารือขั้นบ้านและขั้นเมือง
(2) กิจกรรมการมีส้วนร่วมของประชาชน

- จัดประชุมเผยแพร่ข้อมูลขั้นบ้าน เพื่อชี้แจงเกี่ยวกับแผนพัฒนาโครงการ ผลประโยชน์ที่จะ ได้รับจากโครงการ ผลกระทบต่อสิ่งแวดล้อมและสังคม ที่อาจจะเกิดขึ้น ดำเนินการ โดยประสานงานกับองค์การ ปกครองท้องถิ่นของเมือง และหน่วยงานที่รับผิดชอบในการพัฒนาโครงการจัดประชุมทุกหมู่บ้านตามแนว เส้นทาง พร้อมทั้งรวบรวมความเห็นของผู้เข้าร่วมประชุม จัดทำบันทึกการประชุม และเสนอไว้ในรายงาน การศึกษาสิ่งแวดล้อมเบื้องต้น
- จัดประชุมปรึกษาหารือขั้นบ้าน เพื่อพิจารณาเห็นชอบต่อร่างรายงานการศึกษาผลกระทบ สิ่งแวดล้อมเบื้องต้น ดำเนินการ โดยประสานงานองค์การปกครองส่วนท้องถิ่น และหน่วยงานที่รับผิดชอบในการ พัฒนาโครงการ โดยมีประชาชนผู้ได้รับผลกระทบ และผู้มีส่วนร่วมอื่นๆ เข้าร่วมประชุม จัดทำบันทึกการประชุม และนำข้อคิดเห็นไปปรับปรุงร่างรายงานฯ
- จัดประชุมปรึกษาหารือขั้นเมือง เพื่อเพื่อพิจารณาเห็นชอบต่อร่างรายงานการศึกษา ผลกระทบสิ่งแวดล้อมเบื้องต้น (ฉบับปรับปรุงจากการปรึกษาหารือขั้นบ้าน) ดำเนินการ โดยประสานงานองค์การ ปกครองส่วนท้องถิ่น และหน่วยงานที่รับผิดชอบในการพัฒนาโครงการ โดยมีประชาชนผู้ได้รับผลกระทบในแต่ ละบ้าน และผู้มีส่วนร่วมอื่นๆ เข้าร่วมประชุม จัดทำบันทึกการประชุม และนำข้อคิดเห็นไปปรับปรุงร่างรายงาน ฉบับดังกล่าวเพื่อจัดทำรายงานฉบับสมบูรณ์ต่อไป

ในการจัดทำบันทึกการประชุมการปรึกษาหารือทุกครั้งจะมีการลงนาม โดยบริษัทที่ปรึกษาผู้จัดทำ รายงานการศึกษาสิ่งแวดล้อมเบื้องต้น และผู้พัฒนาโครงการ

รายงานขั้นสุดทัาย (Final Report) ขทที่ 7 งานประชาสัมพันธ์ และการมีส่วนร่วมของประชาชน โครงการศึกษาความเป็นไปได้และออกแบบเบิ้องตัน โครงการพัญนาถนนจากเมืออหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระขาง) สาธารณรัรประชาธิปไตยประชาชนลาว (สปป.ลาว)
 7.5 ผลการดำเนินงานเผยแพร่ข้อมูลและการดำเนินกิจกรรมด้านการมีส่วนร่วมของ ประชาชน

7.5.1 เข้าพบและหารือกับภาคส่วนต่าง ๆ
(1) ผู้เข้าร่วม

ได้เข้าพบและหารือกับผู้แทนองค์การทรัพยกรน้ำและสิ่งแวดล้อมแขวงไซยะมุรี รองเจ้าเมือง หงสา และหน่วยงานที่เกี่ยวข้องเมืองหงสา วันที่ $21-22$ มีนาคม 2554 และเเ้าพบผู้แทนองค์การทรัพยกรน้ำและ สิ่งแวดล้อมแขวงหลวงพระบาง รองเจ้าเมืองจอมเพชร และหน่วยงานที่เกี่ยวข้องเมืองจอมเพชร วันที่ $23-24$ มีนาคม 2554

นอกจากนี้ในวันที่ระหว่างวันที่ $23-26$ พฤษภาคม 2554 ได้เข้าพบผู้แทนหน่วยงานที่เกี่ยวข้องของ แขวงไซยะบุรี และแขวงหลวงพระบางอีกครั้งได้แก่ ผู้แทนองค์การทรัพยากรน้ำและสิ่งแวดล้อมแขวงไซยะบุรี เจ้าามืองหงสา และหน่วยงานที่เกี่ยวข้องเืืองหงสา ผู้แทนโยธาธิการและขนส่งแขวงหลวงพระบาง เข้าพบผู้แทน องค์การทรัพยากรน้ำและสิ่งแวดล้อมแขวงหลวงพระบาง รองเจ้าเมืองจอมเพชร และหน่วยงานที่เกี่ยวข้องเมือง จอมเพชร(บันทึกการประชุมของภาคส่วนต่างๆ และหมู่บ้านตามแนวเส้นทาง แสดงในภากผนวก ค.1)
(2) ประเด็น

- หัวหน้าหน่วยานที่กี่ยวข้องของมืองหงสาและมืองออมเพชรให้ควมมร่วมมือในการประสานงาน กับหมู่บ้านต่างๆตามแนวสส้นทางโครงการ และเข้าร่วมกิจกรรมการมีส่วนร่วมของประชาจนในทุกหมู่บ้าน
- ผู้แทนหน่วยงานของเมืองหงสา และเมืองจอมเพชรเห็นด้วยต่อการพัฒนาโครงการ โดยเสนอให้มีการศึกษาตามแนวทางการประเมินผลกระทบสิ่งแวดล้อมเบื้องต้นของ สปป.ลาว กำหนดมาตรการ ลดผลกระทบสิ่งแวดล้อมอย่างเหมาะสม
- ผู้แทนหน่วขงานของเมืองจอมเพชรเสนอให้มีการปรับแนวเส้นทางโครงการในช่วงปลาย เพื่อให้สอดคล้องกับแผนพัฒนาเมืองใหม่ของเมืองจอมเพชร ซึ่งแนวเส้นทางที่เสนอนี้จะไปสิ้นสุดบริเวณที่ แผนการก่อสร้างสะพานข้ามแม่น้ำโขงใกล้กับบ้านม่วงคำ
- ผู้แทนองค์การทรัพยากรน้ำและสิ่งแวดล้อมแขวงไซยะบุรีและแขวงหลวงพระบางให้ ข้อมูลเกี่ยวกับขั้นตอนและวิธีการดำนินกิจกรรมการปร็กษาหารือกับประชาชน และแนวทางการทบทวนรายงาน การศึกษาผลกระทบสิ่งแวดล้อมเบื้องต้น
- ผู้แทนโยธาธิการและขนส่งแขวงไซยะมุรีและแขวงหลวงพระบางเสนอให้มีการศึกษาด้าน วิศวกรรม โดยมีการตัดโค้งให้น้อยลง ระยะทางสั้นลง และการเดินทางสะดวกปลอดภัย
(3) ภาพกิจกรรม

7.5.2 จัดประชุมผยแพร่ข้อมูลขั้นบ้าน

ดำเนินการทุกหมู่บ้านตามแนวเส้นทางโครงการระหว่างวันที่ $21-25$ มีนาคม 2554 สรุปผลได้ดังนี้
(1) ผู้เข้าร่วม

- ตัวแทนหน่วยงานระดับแขวงและเมืองของแขวงไซยะบุรี แขวงหลวงพระบาง เมือง หงสาและเมืองจอมเพชร ได้แก่ ทรัพยากรน้ำและสิ่งแวดล้อมแเขวง ห้องว่าการเมืองและ โยฐาธิการและขนส่งเมือง
- ผู้นำชุมชนและตัวแทนประชาชน 21 หู่่า้านตามแนวเส้นทางโครงการ
(2) ประเด็น
- ประชาชนตามแนวเส้นทางโครงการ กลุ่มผู้นำชุมชนและตัวแทนประชาชนที่เข้าร่วม ประชุมทุกหมู่บ้านได้รับทราบลักษณะโครงการในเบื้องต้นและขอบเขตการศึกษาโครงการ
- ผู้เข้าร่วมทุกหมู่บ้านเห็นด้วยต่อการพัฒนาโครงการ โดยให้เหตุผลว่าจะช่วยให้การ เดินทางสะดวกตลอดปี
- ในกรมีที่จะต้องรื้อย้างบ้านเรือนของประชาชนออกจากเขตทาง หรือการขยายเขตทาง ทำให้ประชาชนต้องสูญูเสียที่ดินเพื่อการเกษตร เสนอให้มีการสำรวจความเสียหายในรายละเอียดและช่วยเหลือ ประชาชนในเรื่องของการชดเชยที่ดิน การรื้อย้าย และการก่อสร้างบ้านเรือนหลังใหม่ ตามแนวทางปฏิบิติอย่าง เหมาะสม

บันทึกการประชุมของทุกหมู่บ้านตามแนวเส้นทาง แสดงในภาคผนวก ค. 2
(3) ภาพกิจกรรม

7.5.3 จัดประชุมปรึกษาหารือขั้นบ้าน

ดำเนินการในวันที่ 24 และ 26 พฤษภาคม 2554 โดยพื้นที่เมืองหงสาจัดประชุมที่บ้านนาปุง และพื้นที่ เมืองจอมเพชรจัดประชุมที่ ห้องประชุมเมืองออมเพชร
(1) ผู้เข้าร่วม

- ตัวแทนหน่วยงานระดับแขวงและเมืองของแขวงไซยะบุรี แขวงหลวงพระบาง เมืองหงสา และเมืองจอมเพชร ได้แก่ ห้องว่าการแขวง ทรัพยากรน้ำและสิ่งแวดล้อมแขวง เจ้าเมือง รองเจ้าเมือง ห้องว่าการเมืองและ โยฐาธิการและขนส่งเมือง ทรัพยากรน้ำและสิ่งแวดล้อมเมือง ป่าไม้และกสิกรรมเมือง สหพันธ์แม่หญู่งมือง
- ผู้นำชุมชนและตัวแทนประชาชน 21 หมู่บ้านตามแนวเส้นทางโครงการ
(2) ประเด็น

พื้นที่เมืองหงสา

- ผู้นำชุมชนและตัวแทนประชาชนสอบถามเกี่ยวกับ ความกว้างของเขตทาง ผลกระทบต่อ ที่ดิน ต้นไม้ การรื้อย้ายบ้านเรือน และแนวทางการชดเชยความเสียหายให้แก่เจ้าของทรัพย์สิน

โครงการศึกษาความเป็นไปได้แฉะออกแบบเบื้องตัน

โครงการพัพนากนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สารารณรัฐัประชาธิปไตยประชาชนลาว (สปป.ลาว)

- การสำรวจและออกแบบถนนให้พิจารณามาตรฐานของกรมขัวทาง สปป.ลาว และ พิจารณา ออกแบบบริเวณจุดเชื่อมต่อกับเส้นทางของ ADB 10 ให้มีจุดเด่นเป็นเอกลักษณ์ของเมืองหงสา
- ต้องรวบรวมข้อมูลปริมาณน้ำฝน และปริมาณน้ำท่าในเขตลุ่มน้ำที่เกี่ยวข้องเพื่อนำมา ออกแบบท่อระบายน้ำให้เพียงพอต่อปริมาณน้ำเนื่องจากเคยมีปัญหาเรื่องการระบายน้ำในโครงการอื่น
- ให้พิจารณาแผนพัฒนาโครงการของหน่วยงานอื่นๆที่อยู่ในบริเวณใกล้เคียง เช่น โครงการ ก่อสร้างถนนจากพื้นที่จัดสรรให้ผู้อพยพมายังบริเวณบ้านนาปุง การก่อสร้างแนวสายส่งไฟฟ้าแรงสูง และพัฒนา สวนสาธิตการเกษตร ของ HPC เพื่อออกแบบและก่อสร้างให้สอดคล้องกัน
- ให้มีการสำรวจจำนวนทรัพย์สินที่อยู่ในเขตทางและรายชื่อเจ้าของ และเสนอไว้ในรายงาน
- ให้คณะสำรวจของโครงการประสานงานกับหน่วยงานของแขวงและเมืองอย่างใกล้ชิด เพื่อหลีกเลี่ยงปัญหาในการเข้าพื้นที่
- เสนอให้เปลี่ยนจุดเริ่มต้นโครงการจากบริเวณสามแยกบ้านนาปุงมาเป็นบริเวณเมืองหงสา
- ผู้เข้าร่วมประชุมให้ความเห็นว่าการพัฒนาโครงการจะส่งผลต่อการประกอบอาชีพของ ประชาชนตามแนวเส้นทาง เช่น ปลูกไม้ผล พืชผัก และสัตว์เลี้ยง เนื่องจากการขนส่ง ผลผลิตไปขายสะดวกขึ้น
- ผู้เข้าร่วมประชุมเห็นด้วยต่อการพัฒนาโครงการเนื่องจากทำให้การเดินทางสะดวกและ ปลอดภัยขึ้น ส่วนผลกระทบจากกิจกรรมก่อสร้างและดำเนินโครงการคาดว่าจะได้รับมีเพียงเล็กน้อยเมื่อเทียบกับ ประโยชน์ที่จะได้รับ

พื้นที่เมืองจอมเพชร

- ผู้นำชุมชนและตัวแทนประชาชนสอบถามเกี่ยวกับ ผลกระทบต่อที่ดิน ต้นไม้ การรื้อย้าย บ้านเรือน และแนวทางการชดเชยความเสียหายให้แก่เจ้าของทรัพย์สิน
- การตัดต้นไม้ในพื้นที่เขตทางโครงการ ซึ่งมีสภาพเป็นป่าสงวนจะมีมาตรการลด ผลกระทบอย่างไรและหน่วยงานใดรับผิดชอบ
- การพิจารณาชดเชยต่อผลกระทบที่จะเกิดขึ้นกับประชาชนต้องมีความเหมาะสมและ เป็นธรรม เพื่อให้ผู้ได้รับผลกระทบสามารถดำเนินชีวิต ได้เช่นเดิมหรือดีกว่าเดิม
- ผู้เข้าร่วมประชุมเห็นด้วยต่อการพัฒนาโครงการเนื่องจากทำให้การเดินทางสะดวก เป็น การพัฒนาโครงสร้างพื้นฐานของเมือง มีส่วนช่วยให้เศรษฐูกิจและการบริการขยายตัว

ประชุมปรึกษาหารือขั้นบ้านในพื้นที่เมืองจอมเพชรที่ห้องประชุมเมืองจอมเพชร วันที่ 26 พฤษภาคม 2554

รายงานขั้นสุดท้าย (Final Report)
 โครงการศึกษาความเป็นไปได้และออกแบบเบื้องตัน
 โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

 บทที่ 8 การวิเคราะห์ความเหมาะสมของโครงการ

 บทที่ 8 การวิเคราะห์ความเหมาะสมของโครงการ}

การวิเคราะห์ทางด้านเศรษฐูกิจของโครงการอยู่บนพื้นฐูานเหมือนกับการประเมินผลทางเศรษฐูกิจ โดยทั่วไปคือเพื่อต้องการที่จะพิจารณาว่าในการพัฒนาโครงการนั้นจะก่อให้เกิดผลประโยชน์ทางด้านเศรษฐูกิจ ที่ มีต่อประเทศโดยส่วนรวมคุ้มค่ากับต้นทุนของทรัพยากรที่ได้ถูกนำมาใช้หรือไม่ และถ้าหากโครงการมีความ เหมาะสมจะได้ทำการวิเคราะห์ถึงความอ่อนไหวของโครงการภายใต้สถานการณ์ที่ไม่แน่นอน อันเนื่องมาจากเมื่อ ตัวแปรบางตัวทางด้านค่าใช้จ่ายและผลประโขชน์เปลี่ยนแปลงไปจากกรณีปกติ

ทั้งนี้การพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สปป.ลาว ดำเนินการเพื่อรองรับการเติบโตของเมืองหงสาและเมืองหลวงพระบาง สปป. ลาว ซึ่งเป็นเส้นทางสายหลักในการ เดินทางเชื่อมจากเมืองหงสาไปยังเมืองหลวงพระบาง โดยพื้นที่ส่วนใหญู่ของเส้นทางจะผ่านพื้นที่ภูเขา และมีลำน้ำตัด ผ่านเป็นระยะๆ ทำให้ถนนบางช่วงไม่สะดวกในการเดินทางในดดูฝน เนื่องจากกระแสน้ำที่ไหลลงจากภูเขา เป็น อุปสรรคต่อการสัญจรระหว่างเส้นทาง ดังนั้นการพัฒนาถนนเส้นนี้จึงง่อให้เกิดผลประโยชน์ทางตรงกับผู้ใช้ถนน โครงการ และผลประโยชน์ทั้งทางตรงและทางอ้อมต่อสังคม โดยส่วนที่สามารณเห็นได้ดัดเจนและวัดมูลค่าได้ ประกอบด้วย การประหยัดค่าใช้จ่ายในการใช้ยานพาหนะ การลดระยะเวลาในการเดินทาง และการลคค่าใช้จ่ายที่เกิด จากอุบัติเหตุ ซึ่งจัดเป็นผลประโยชน์ทางด้านการจราจร รวมถึงผลประโยชน์ทางด้านเศรษฐูกิจที่กี่อให้เกิดรายได้จาก การท่องเที่ยวและเกษตรกรรมแพิ่มขึ้น สำหรับผลประโขชน์ทางอ้อมจะมองเห็นเชิงนามธรรมมากกว่าและเกิดกับสังคม ในวงกว้าง เช่น มาตรฐานชีวิตของประชาชนที่ดีขึ้น การพัฒนาด้านสังคมและเศรษฐิกิจในพื้นที่ ราคาที่ดินหรือ ทรัพยากรอื่นๆ เพิ่มสูงขึ้น เป็นต้น ซึ่งยากที่จะประมาณค่าผลประโฮชน์ได้ถูกต้อง แต่อย่างไรก็ตามผลประโยชน์เหล่านี้ ได้สะท้อนให้เห็นในมูลค่าการขยายตัวทางศศรษจูกิจทั้งในระดับประเทศ และระดับจังหวัดอยู่ด้วยแล้ว

ดังนั้นในการวิเคราะห์โครงการจะคำนึงถึงเฉพาะผลประโขชน์ทางตรงเป็นหลัก ซึ่งสามารถประมาณ การมูลค่าทางเศรษฐูกิจได้ งานศึกษาด้านการวิเคราะห์โครงการทางด้านเศรษฐูกิจนี้มีวัตุุประสงค์เพื่อวิเคราะห์ ผลตอบแทนทางเศรษฐูกิจทางตรงโดยพิจารณาความเหมาะสมของโครงการ ซึ่งได้จากการเปรียบเทียบระหว่าง ค่าใช้จ่ายและผลประโยชน์ทางเศรษฐูกิจที่ได้รับในกรมี "ไม่มีโครงการ" (Without Project) กับกรณีมีโครงการ (With Project) ทั้งนี้การวิเคราะห์โครงการทางด้านเศรษฐงกิปประกอบดัวย

- งานวิเคราะห์ค่าใช้่ายในการลงทุนของโครงการทางด้านเศรษฐูกิจ
- งานวิเคราะห์ผลประโชชน์ของโครงการทางด้านเศรษฐูกิจ
- งานวิเคราะห์ผลตอบแทนของโครงการทางด้านเศรษฐูกิจ
- งานวิเคราะห์ความอ่อนไหวของโครงการ

รูปที่ $8-1$ ขั้นตอนในการวิเคราะห์โครงการทางด้านเศรษฐิกิจ

การวิ|คระะห์โครงการจัดทำภายใด้ข้อกำหนดที่ใช้ในการวิเคราะห์ ดังนี้

- ระยะเวลาในการวิเคราะห์โครงการ 20 ปี ไม่รวมระยะเวลาก่อสร้างโครงการ
- ค่าเสียโอกาสของเงินลงทุนเท่ากับร้อยละ 12 ต่อปี (เป็นอัตราที่เคยมีการศึกษาถึงต้นทุนของเงิน ลงทุนในประเทศไทย โดยธนาคารโลกและสำนักงานคณะกรรมการพัฒนาการเศรษฐูิจและ สังคมแห่งชาติ และเป็นอัตราซึ่งใช้ในการวิเคราะห์โครงการภาครัฐในหลายๆหน่วยงานใน ปัจจุบัน เช่น กรมทางหลวง การทางพิศศษแห่งประเทศไทย การรถไฟแห่งประเทศไทย สำนักงาน นโขบายและแผนการขนส่งและจราจร เป็นต้น)
- ราคาค่าใช้่ายของโครงการเป็นราคาคงที่ ณ ปี พ.ศ. 2554
- การคิดมูลค่าทางเศรษฐูกิจ ใช้ราคาทางการเงินนำมาหักรายการบิดเบือน เนื่องจากราคาตลาดจะถูก บิดเบือนด้วยสาเหตุต่างๆ เช่น ตลาดมีการแข่งขันที่ไม่สมบูรณ์ รัฐูเข้าแทรกแซงตลาด เกิดผล กระทบภายนอกในการผลิตและอื่นๆ มูลค่าทางการเงินจะไม่สะท้อนถึงความเต็มใจจ่าย และค่า

เสียโอกาสของสังคม จึงต้องปรับมูลค่าทางการเงินให้เป็นมูลค่าทางเศรษฐกิจ โดยใช้ตัวปรับค่า
(Conversion Factor)

- การคิดมูลค่าซากของถนนและโครงสร้างพื้นฐานต่างๆ ในปีสุดท้ายของโครงการ คิดในอัตราร้อย ละ 50 ของมูลค่าก่อสร้าง
- อัตราแลกเปลี่ยน 1 ดอลล่าร์สหรัฐ เท่ากับ 8,000 กีบ หรือเท่ากับ 31 บาท

8.1 การประเมินค่าใช้จ่ายของโครงการทางเศรษฐกิจ

การประเมินค่าใช้จ่ายของโครงการประกอบด้วย ค่าก่อสร้างโครงการ ค่าดำเนินการ ค่าบำรุงรักษา ค่าจัดกรรมสิทธิ์ที่ดิน ค่าชดเชยสิ่งปลูกสร้าง และค่าใช้จ่ายทางตรงอื่นๆ โดยราคาประมาณการจะใช้ราคา ณ ปีบัจจุบัน เป็นปีฐาน ซึ่งในการวิเคราะห์ทางเศรษฐิกิจนั้นค่าใช้จ่ายของโครงการจะหมายถึงต้นทุนที่แท้จริงของทรัพยากรที่นำมาใช้ ในการดำเนินโครงการ โดยหักค่าใช้จ่ายที่เป็นรายการเงินโอนต่างๆ เช่น ภาษี อากรขาเข้าและขาออก ดอกเบี้ย และ เงินชดเชยต่างๆ เป็นต้น ดังนั้น ในการวิเคราะห์จึงต้องมีการปรับมูลค่าทางการเงินให้เป็นมูลค่าทางเศรษฐูกิจ โดยการนำ มูลค่าทางการเงินคูณด้วยตัวปรับค่า (Conversion Factor)

ทั้งนี้การวิเคราะห์โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน ได้ใช้ Conversion Factor ตาม โครงการปรับปรุงและก่อสร้างถนนจากบ้านฮวก-เมืองคอบ สปป.ลาว, 2554 ซึ่งอ้างอิงจากรายงาน " $B O R D E R$ TOWNS URBAN DEVELOPMENT PROJECT", Asian Development Bank \& National Economic and Socio Development Board, 1999 โดยมีรายละเอียดดังนี้

- ค่าก่อสร้างงานด้านโยธา
- ค่าชดเชยอาคารสิ่งปลูกสร้างและพืชผล
- ค่าชดเชยที่ดิน
- ค่าสำรวจและออกแบบ
- ค่าควบคุมงานก่อสร้าง
- ค่าดำเนินการและบำรุงรักษา
- ค่าใช้จ่ายเพื่อการท่องเที่ยว
- ค่าใช้จ่ายด้านอื่นๆ

เท่ากับ 0.89

เท่ากับ 0.89

เท่ากับ 1.00

เท่ากับ 0.95
เท่ากับ 0.95

เท่ากับ 0.95
เท่ากับ 0.95
เท่ากับ 0.95

ที่มา: การศึกษาความเป็นไปได้และออกแบบเบื้องต้น โกรงการปรับปรุงและก่อสร้างถนนจากบ้านชวก (จ. พะเยา) - เมืองคอบ - เมืองปากทา เพืองปากคอบ - เพืองเชียงช่อน - เพืองคอบ สปปป.ลาว, 2554 อ้างอิงจาก "BORDER TOWNS URBAN DEVELOPMENT PROJECT", Asian Development Bank \& National Economic and Socio Development Board, 1999

ทั้งนี้การก่อสร้างถนนโครงการรวมระยะทาง 114 กิโลเมตร แสดงรายละเอียดค่าใช้จ่ายในการลงทุน ดังตารางที่ 8.1-1

ตารางที่ 8.1-1 ค่าใ้ช่ายในการลงทุนของโครงการ

หน่วย: ถ้านบาท

รายการ	มูลค่าทางการเงิน	มูลค่าทางเศรษฐกิจ
ค่าจัดกรรมสิทธิ์ที่ดินและสิ่งปลูกสร้าง	5.40	4.81
ค่าก่อสร้าง	$1,925.29$	$1,829.03$
ค่าตรวจสอบติดตามสิ่งแวดล้อมระหว่างก่อสร้าง	2.91	2.77
ค่าควบคุมงาน	67.39	64.02
รวมค่าลงทุนโครงการ	$2,000.99$	$1,900.62$
ค่าบำรุงรักษา (ตลอดอายุโครงการ)	770.64	732.11
ค่าตรวจสอบติดตามสิ่งแวดล้อมระหว่างให้บริการ	11.99	11.39
รวมทั้งหมด	$2,783.62$	$2,644.12$

ที่มา: ที่ปรักยา, 2554

8.2 การประเมินผลประโยชน์ของโครงการทางด้านจราจร

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐ ประชาธิปไตยประชาชนลาว (สปป.ลาว) จะก่อให้เกิดผลประโยชน์ในด้านการจราจรสำหรับผู้ใช้ถนนที่อยู่ในพื้นที่ อิทธิพลของโครงการ กล่าวคือ ผลประโยชน์โดยรวมที่เกิดขึ้นจะได้รับทั้งผู้ใช้ถนนโครงการ และผู้ที่ไม่ใช้ถนน โครงการ เนื่องจากการก่อสร้างและปรับปรุงถนนโครงการจะช่วยกระจายปริมาณจราจรส่วนหนึ่งจากทางหลวง สายหลักเดิม และถนนในโครงข่าย ให้เปลี่ยนมาใช้ถนน โครงการ ทำให้โครงข่ายถนนในพื้นที่อิทธิพลโครงการ สามารถรองรับปริมาณจราจรได้มากขึ้น และมีสภาพการจราจรที่คล่องตัวขึ้น นอกจากนี้การก่อสร้างปรับปรุงถนน โครงการยังช่วยให้เดินทางด้วยความเร็วที่ดีขึ้นบนเส้นทางที่มีมาตร ฐูาน ซึ่งผลประโยชน์ทางตรงที่กล่าวมาข้างต้น สามารถประมาณการเป็นมูลค่าทางเศรษฐกิกจ โดยพิจารณาจาก

- มูลค่าของการประหยัดค่าใช้จ่ายจากการใช้ยานพาหนะ (Vehicle Operating Cost Saving)

การประหยัดค่าใช้จ่ายในการใช้ยานพาหนะ (Vehicle Operating Cost: VOC Saving) เป็นผลตอบแทน ทางเศรษฐกิจที่สำคัญของการปรับปรุงระบบโครงข่ายการขนส่ง การวิเคราะห์หาค่าใช้จ่ายในการใช้ยานพาหนะ

จะต้องมีค่าที่เหมาะสมกับสภาพความเป็นจริงทั้งทางด้านภูมิประเทศ การจราจร และสัดส่วนการใช้ยานพาหนะ ประเภทต่างๆ ในพื้นที่กรุงเทพมหานครและปริมณฑล โดยอาศัยการคำนวณตามหลักการของโปรแกรม $\mathrm{HDM}-4$ ซึ่งได้รับการยอมรับจากนานาประเทศ การประเมินผลตอบแทนในด้านการประหยัดค่าใช้จ่ายในการใช้ยานพาหนะ เนื่องจากการมีโครงการฯ (VOC saving) ได้จากผลต่างระหว่างมูลค่าของค่าใช้จ่ายในการใช้ยานพาหนะในกรณี ไม่มีโครงการและกรณีที่มีโครงการ โดยค่าใช้จ่ายในการใช้ยานพาหนะได้จากการนำค่าใช้จ่ายในการใช้ยานพาหนะ ตัวแทนคูณด้วยระยะทางรวมของระบบที่ผู้ใช้ถนนเดินทาง (VKT) โดยมีสูตรการคำนวณดังนี้

$$
\begin{aligned}
& \mathrm{VOC}_{\text {saving }}=\left(\mathrm{VOC}_{\text {ยานหาหนะตัดแนน }} \mathrm{x} \mathrm{VKT}_{\text {ไมม่ี่โครงการ }}\right)-\left(\mathrm{VOC}_{\text {ยานพาหนะตันเทน }} \mathrm{x} \mathrm{VKT}_{\text {มีโครงการ }}\right) \\
& \text { โดยที่ } \\
& \mathrm{VOC}_{\text {saving }}=\text { มูลค่าของการประหยัดค่าใช้จ่ายจากการใช้ยานพาหนะ, บาท } \\
& \mathrm{VOC}_{\text {ยานทหหนะตัแนทน }}=\text { มูลค่าใช้จ่ายในการใช้ยานพาหนะตัวแทน, บาท/PCU-กม. } \\
& \mathrm{VKT}_{\text {पมมี่โครงการ }}=\text { ระยะทางรวมของระบบที่ผู้ใช้บริการเดินทางกรณีไม่มีโครงการ, } \mathrm{PCU} \text {-กม. } \\
& \mathrm{VKT}_{\text {มี่ครงการ }}=\text { ระยะทางรวมของระบบที่ผู้ใช้บริการเดินทางกรณีมีโครงการ, } \mathrm{PCU} \text {-กม. }
\end{aligned}
$$

สำหรับวิธีการคำนวณค่าใช้จ่ายจากการใช้ยานพาหนะนี้ ได้อ้างอิงการศึกษาจากการศึกษาความเป็นไปได้ และออกแบบรายละเอียดโครงการก่อสร้างถนนจากกูจู่ (อ.บ้านโคก จ.อุตรดิตถ์) ถึงเมืองปากลาย สปป.ลาว, 2553 ซึ่งอ้างอิงจากกโครงการศึกษาพัฒนาโครงข่ายทางหลวงเลียบชายแดนประเทศไทยกับประเทศเพื่อนบ้าน, กรมทางหลวง, 2553 โดยการศึกษาดังกล่าวคำนวณหาค่าใช้จ่ายในการใช้ยานพาหนะจากโปรแกรม $\mathrm{HDM}-4$ ซึ่งเป็นการประเมิน มูลค่าใช้จ่ายในการใช้ยานพาหนะจากราคาน้ำมันเชื้อเพลิง ราคายาง ราคาน้ำมันเครื่อง ราคารถยนต์ และค่าเสื่อมของ ยานพาหนะตัวแทน ตลอคจนค่าแรงงานในการบำรุงยานพาหนะ ทั้งนี้ที่ปร็กษาได้ปรับปรุงข้อมูลต่างๆให้อยู่ในมูลค่า ปัจจุบัน โดยแสดงรายละเอียดการคำนวมดังรูปที่ 8.2-1

รูปที่ 8.2-1 แผนภูมิการคำนวณค่าใช้ จ่ายในการใช้ยานพาหนะ

ตารางที่ 8.2-1 รากาขายปลีกเฉีี่ยของน้ำมันเชื้อเพลิง

	ULG95	ULG91	Gasohol95 E10	Gasohol95 E20	Gasohol91	HSD B2	HSD B5
ราคาทางการเงิน	37.17	33.42	31.01	31.90	29.79	28.64	28.41
ราคาทางเศรษฐิกิจ	20.11	21.31	23.01	21.26	21.07	21.58	21.36

ที่มา: สำนักงานนโยบายยและแผนพลังงาน กระทรวงพลังงาน, 2553
คำนวแ โดยที่ปรรกษา. 2554
หมายเหตุ: การกำนวนราคานน้ำมันเชื้อเพลิงเป็นราคาปัอจุบันที่เมืองหงสา

เมื่อปรับปรุงข้อมูลที่เกี่ยวข้องกับค่าใช้ว่ายในการใช้ยานพาหนะตามรายละเอียดข้างต้นแล้ว จึงนำข้อมูล ปัจจัยด้านราคาต่างๆที่เป็นมูลค่าทางการเงินมาปรับให้อยู่ในรูปมูลค่าทางเศรหฐูกิจ โดยหักค่าใช้จ่ายในรายการเงินโอน ต่างๆ เช่น ค่าภาษี จากนั้นจึงนำมาคำนวณหามูลค่าใช้ำยในการใช้ยานพาหนะตามโปรแกรม $\mathrm{HDM}-4$ โดยจำแนก มูลค่าใช้ว่ายในการใช้ยานพาหนะตามลักษณะภูมิประเทศ ซึ่งแบ่งออกเป็น 3 กรณี คือ พื้นที่ราบ พื้นที่เนิน และพื้นที่ ภูเขา แสดงในตารางที่ 8.2-2

ตาราทที่ 8.2 -2 ค่าใช้จ่ายในการใช้ยานพาหนะ ณ ระดับความเร็วต่างๆ

ความเร็ว (กม./ชม.)		$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{8 0}$	$\mathbf{9 0}$	$\mathbf{1 0 0}$	$\mathbf{1 1 0}$	$\mathbf{1 2 0}$	
ค่า VOC (บาท/	กรณีที่ราบ	25.58	17.55	15.10	13.95	13.19	13.12	13.31	13.73	14.34	15.17	16.23	17.53	
	กรณีเนิน	25.67	17.65	15.11	14.01	13.28	13.22	13.42	13.84	14.47	15.30	16.36	17.68	
กรณีภูเขา	25.87	17.74	15.27	14.06	13.46	13.42	13.64	14.07	14.71	15.56	16.63	17.95		

ที่มา: ที่ปรีกษา, 2554

จากนั้นจึงคำนวณหามูลค่าประหยัดค่าใช้จ่ายจากการใช้ยานพาหนะ (VOC Saving) จากผลต่างของ มูลค่าใช้จ่ายจากการใช้ยานพาหนะระหว่างกรณีที่ไม่มี โครงการและกรณีที่มี โครงการ ซึ่งแสดงรายละเอียดดังตารางที่ 8.2-3

- มูลค่าจากการประหยัดเวลาในการเดินทาง (Travel Time Saving)

มูลค่าเวลาในการเดินทาง หมายถึง มูลค่า (ที่เทียบเท่ากับเงิน) ที่ต้องสูญเสียไปในการเดินทาง ซึ่งถ้า หากสามารถนำเวลาที่ใช้ในการเดินทางดังกล่าว ไปประกอบกิจการอื่นจะสามารถสร้างมูลค่าเพิ่มให้แก่ เศรษจูศาสตร์ได้ ดังนั้น ผลตอบแทน โดยตรงจากการปรับปรุงโครงข่ายถนนจะทำให้ประหยัดเวลาเดินทางของ ผู้โดยสาร (VOT Saving) โดยที่ผลตอบแทนที่เกิดขึ้นจากการประหขัดเวลาเดินทาง จะเกิดขึ้นแก่ผู้ที่เดินทางบน โครงข่ายทั้งหมด ไม่จำกัดเฉพาะผู้ที่ใช้โครงข่ายที่ทำการศึกษาเท่านั้น เพราะผลจากการปรับปรุงโครงข่ายถนนที่ ทำการศึกษาจะมีผลให้โครงข่ายถนนทั้งระบบสามารถใช้งานได้ดีขึ้น การประเมินผลตอบแทนในด้านการ

โดยที่
VOT $_{\text {saving }}=$ มูลค่าของการประหยัดเวลาในการเดินทาง, บาท
VOT $=$ มูลค่าเวลาของผู้เดินทางในพื้นที่ศึกษา, บาท/PCU-ชม.
$\mathrm{VHT}_{\text {リมシỉโโคงงกา }}=$ ระยะเวลารวมของระบบที่ผู้ใช้บริการเดินทางกรณีไม่มี โครงการ, $\mathrm{PCU}-ช ม$.
$\mathrm{VHT}_{\text {มีโครงการ }}=$ ระยะเวลารวมของระบบที่ผู้ใช้บริการเดินทางกรณีมี โครงการ, PCU -ชม.

ทั้งนี้การศึกษาครั้งนี้พิจารณาผลประโยชน์จากการลดระยะเวลาในการเดินทางที่มีต่อภาพรวม เศรษฐกิจของสปป.ลาว ดังนั้นจึงใช้ข้อมูลมหภาคในการคำนวณมูลค่าเวลา ซึ่งประกอบด้วย ผลิตภัณฑ์มวลรวม ภายในประเทศ (Gross Domestic Product: GDP) จำนวนประชากร ดัชนีราคาผู้บริโภค และอัตราแลกเปลี่ยน ซึ่ง สมมติฐานให้อัตราแลกเปลี่ยนค่าเงิน 250 กีบ เท่ากับ 1 บาท ทั้งนี้วิธีการหามูลค่าเวลาแบ่งออกเป็น 2 วิธี (โครงการ ก่อสร้างถนนจากภูู่่ อ.บ้าน โคก จ.อุตรดิตถ์ ถึงเมืองปากลาย สปป.ลาว, 2553) คือ

- การหามูลค่าเวลาของเวลาจากมูลค่าผลิตภัณฑ์มวลรวมภายในประเทศ (Gross Domestic Product: GDP)

การหามูลค่าของเวลาโดยวิธีนี้จะนำมูลค่าผลิตภัณฑ์มวลรวมภายในประเทศ หรือมูลค่าผลิตภัณฑ์ มวลรวมภายในจังหวัดหรือแขวง (Gross Provincial Product: GPP) หารด้วยจำนวนประชากรในประเทศหรือระดับ แขวง ร่วมกับจำนวนชั่วโมงเฉลี่ยของการทำงานต่อปี ซึ่งจะทำให้ได้มูลค่าของเวลาผู้เดินทางในประเทศหรือระดับ แขวง ทั้งนี้วิธีนี้เป็นที่นิยมนำมาใช้ในการวิเคราะห์โครงการด้านเศรษฐูกิจ

- การหามูลค่าเวลาจากอัตราค่าจ้างเฉลี่ย (Average Wage Rate)

วิธีนี้คำนวณจากมูลค่าของเวลาที่ได้รับผลตอบแทนที่เป็นตัวเงิน ซึ่งกำหนดให้มีค่าเท่ากับค่าจ้าง (Wage Rate) อาทิ มูลค่าเวลาของการเดินทาง โดยรถ โดยสาร ประกอบด้วยค่าจ้างพนักงานขับรถโดยสาร (บาทต่อ เดือน) จากนั้นเมื่อนำมาหารด้วยจำนวนชั่วโมงทำงานต่อเดือนจะได้มูลค่าเวลาทำงาน ทั้งนี้การศึกษามูลค่าเวลาวิธี้ มักนำไปใช้ศึกษาพฤติกรรมการเดินทาง

ตารางที่ 8.2-3 มูลค่าเวลาของผู้เดินทางในพี้นที่ศึกษา

	รายการ	$4,754,637.02$
1.	รายได้ต่อหัว ปีพ.ศ.2552 (กีบ/คน/ปี) ${ }^{1}$	$5,039,915.24$
2.	รายได้ต่อหัว ปีพ.ศ.2553 (กีบ/คน/ปี) ${ }^{2}$	$20,159.66$
3.	รายได้ต่อหัว ปีพ.ศ.2553 (บาท/คน//ี) ${ }^{3}$	55.23
4.	รายได้ต่อหัว (บาท/คน/วัน)	8.00
5.	ชั่วโมงทำงานเฉลี่ย (ชั่วโมง) ${ }^{4}$	6.90
6.	มูลค่าเวลา (บาท/คน/ชั่วโมง)	5.00
7.	จำนวนผู้โดยสารเฉลี่ย (คน/คัน) ${ }^{5}$	34.50
8.	มูลค่าเวลา (บาท/คัน/ชั่ว โมง)	

หมายルหตุ: ' www.nsc.gov.la
${ }^{2}$ ปรับข้อมูลให้ป็นปีพ.ศ. 2553 ด้วยการเปลี่ยนแปลงของ $C P I_{\text {aาว ซึ่งจัดเป็นอัตราเงินเฟ้อเมื่อปีพพ.ศ. } 2553}$
${ }^{3}$ ปรับราย ได้ต่อหัวให้อยู่ในรูปเงินบาท ด้วยการสมมติฐานให้ 250 กีบ เท่ากับ I บาท
*อ้างอิงจากโครงการปรับปรุงและก่อสร้างถนนจากภูดู่ (อ.ข้านโคก จ.อุตรดิตถ์) ถึงเมืองปากลาย สปป.ลาว, 2553
รจากการศึกษาด้านวิศวกรรมจราจรในพื้นที่โครงการ

* คำนวมโดยที่ปรึกษา, 2554

จากนั้นจึงคำนวณหามูลค่าประหยัดเวลาในการเดินทาง (VOT Saving) จากผลต่างของมูลค่าเวลาใน การเดินทางระหว่างกรณีที่ไม่มีโครงการและกรณีที่มีโครงการ ซึ่งแสดงรายละเอียดดังตารางที่ 8.2-4

ตารางที่ 8.2-4 ผลประโยชน์ทางตรงด้านจราจร

ปีที่	ผลประโยชน์ทางตรง (ล้านบาท/ปี)			
	มูลค่าประหยัด ค่าใช้จ่ายในการใช้ ยานพาหนะ	มูลค่าประหยัดเวลา ในการเดินทาง	รวม	
	56	15	71	
2563	72	18	90	
2568	92	23	114	
2573	114	28	141	
2578	152	36	188	

ที่มา: ที่ปรึกษา, 2554

8.3 การประเมินผลประโยชน์ทางด้านเศรษฐกิจ

นอกจากผลประโยชน์ทางด้านจราจร ยังจะมีผลประ โยชน์ที่มีผลต่อการขยายตัวทางด้านเศรษฐกกจที่ เกิดขึ้นจากการก่อสร้างถนนโครงการ ซึ่งสามารถนำมาคิดเป็นมูลค่าตัวเงินได้ คือ ผลประโยชน์ที่เกิดจากการ ปรับตัวทางด้านการท่องเที่ยวและการขยายตัวทางการเกษตรของเกษตรกรท้องถิ่นและการลงทุนจากประเทศ เพื่อนบ้าน (Contract farming) เพื่อรองรับการเจริญเติบโตทางการท่องเที่ยวและเกษตรกรรม เมื่อมีการพัฒนาถนน หงสา-บ้านเชียงแมน ทั้งนี้ปัจจุบันก่อนถึงจุดเริ่มต้นโครงการฯ ณ เมืองหงสามีโครงการที่กำลังก่อสร้างโรงไฟฟ้า พลังความร้อนหงสาลิกไนต์ ณ แขวงไชยะบุรี สปป.ลาว โดยมีนักลงทุนไทยถือหุ้นมากที่สุดในสัดส่วนถึงร้อยละ 80 แต่เส้นทางคมนาคมช่วงนั้นยังไม่มีความสะดวก จึงทำให้เป็นอุปสรรคต่อการขนส่งวัสดุอุปกรณ์ และการ เดินทางของแรงงาน นอกจากนี้ยังเป็นเส้นทางที่ถือว่าสามารถเดินทางเพื่อไปท่องเที่ยวเมืองหลวงพระบางได้ใกล้ กว่าเส้นทางอื่นที่นักท่องเที่ยวใช้บริการในปัจจุบัน ดังนั้นโครงการนี้จึงมีส่วนสนับสนุนการเดินทาง การขนส่ง ปัจจัยการผลิตและการเคลื่อนย้ายผลผลิตทางการเกษตรในพื้นที่ โครงการและพื้นที่อิทธิพลให้อำนวยความสะดวก เกิดความคล่องตัว รวมถึงช่วยลดค่าใช้จ่ายและระยะเวลาในการเดินทาง ให้แก่นักท่องเที่ยวและผู้สัญจรเพื่อติดต่อ ธุรกิจ หรือทำธุรกรรมต่างๆ

ทั้งนี้เมื่อมีการพัฒนาถนนโครงการ และสามารถดึงดูดให้นักลงทุนและนักท่องเที่ยวหันมาใช้บริการ เส้นทางโครงการมากกว่าเส้นทางอื่น ซึ่งจะก่อให้เกิดรายได้จากการท่องเที่ยวและการเกษตร (Contract farming) กับ ชุมชนในบริเวณดังกล่าว ทำให้มีเงินทุนหมุนเวียนในระบบเศรษฐกิจมากขึ้น โดยจะส่งผลดีต่อภาพรวมเศรษฐูกิจ ของทั้งสปป.ลาวและประเทศไทย ซึ่งจะได้รับผลประโยชน์จากการท่องเที่ยวและเกษตรกรรม ทั้งนี้การวิเคราะห์ ผลประโยชน์ทางเศรษฐกิจและสังคมของโครงการ แสดงรายละเอียดดังนี้

1) มูลค่าผลประโยชน์จากการท่องเที่ยว (Tourism benefit)

การพัฒนาถนนโครงการส่งผลโดยตรงต่อวิถีชีวิตทางด้านการเดินทางของคนท้องถิ่น และอำนวยความ สะดวกทางด้านการเดินทางของนักท่องเที่ยวในสปป.ลาว โดยเฉพาะอย่างยิ่งนักท่องเที่ยวที่เดินทางจากภาคเหนือและ ภาคตะวันออกเฉียงเหนือตอนบนของไทยที่นิยมเดินทางไปเที่ยวต่อที่เมืองหลวงพระบาง สปป.ลาว และยังแวะ ท่องเที่ยวตามเมืองต่างๆ ตลอดเส้นทางการเดินทางไปยังเมืองหลวงพระบาง ซึ่งกล่าวได้ว่า หลวงพระบางนอกจากจะ เป็นศูนย์กลางการท่องเที่ยวของสปป.ลาวแล้ว ยังเป็นจุดเริ่มต้นที่นักท่องเที่ยวสามารถเดินทางเพื่อการท่องเที่ยวใน เส้นทางอื่นๆได้อีกด้วย อาทิ คุนหมิง ประเทศจีน ทั้งนี้เส้นทางถนนโครงการถือว่าเป็นเส้นทางที่มีศักยภาพสูงแต่ยัง ไม่ได้รับการพัฒนา นับว่าการพัฒนาถนนโครงการจะทำให้การเดินทางจากฝั่งชายแดนไทยตอนเหนือไปสปป.ลาว สะดวกมากขึ้น รวมถึงผู้สัญจรตลอดแนวเส้นทางหงสา-บ้านเชียงแมน สามารถเดินทางไปยังหลวงพระบางได้ สะดวกขึ้น ทุกฤดูกาล เนื่องจากเส้นทางนี้มีระยะทางการเดินทางบนถนนสั้นกว่าเส้นทางอื่น ทำให้สามารถประหขัด ค่าใช้จ่ายและลดระยะเวลาในการเดินทางแก่กลุ่มนักท่องเที่ยวที่ให้ความสำคัญกับระยะเวลาเพื่อการเดินทาง

ดังนั้นที่ปรึกษาจึงพิจารณาสถิติำนวนนักท่องเที่ขวระหว่างชายแดนไทยกับสปป.ลาวที่ผ่านมา ร่วมกับ มัจจัยภายนอกต่างๆที่คาดว่าจะส่งผลต่อการเจริญเติบโตของนักท่องเที่ยว อาทิ แผนการพัฒนาการท่องเที่ยวของสปป. ลาว โดยเฉพาะเมืองหลวงพระบาง การเริญูเติบโตทางศรษฐูกิจของสปป.ลาวเละกลุ่มประเทศอินโดจีน รวมถึงอัตรา เจริญูบติบโตของประชากรสปป.ลาว เป็นต้น ทั้งนี้การคำนวมหาผลประโยชน์ทางต้านการท่องเที่ยวเมื่อมีการพัฒนา ถนนโครงการที่คาดว่าจะเพิ่มขึ้นอีก 20 ปีตลอดอายุโครงการ ประเมินจากผลคูณของอุปสงค์ท่องเที่ยวที่คาดการณ์ ค่าใช้จ่ายเฉลี่ยต่อหัวของนักท่องเที่ยว และอัตราวันเข้าพักเฉลี่ย ทั้งนี้อุปสงค์ท่องเที่ยวของโครงการในอนาคต แสดง รายละะอียดการคำนวณในบทที่ 2 การศึกษากิจกรรมทางด้านเศรษฐูกิจแเละสังคม

การศึกษานี้สมมติฐานให้ค่าใช้าายเฉลี่ยต่อหัวของนักท่องเที่ยวต่างชาติ และอัตราเฉลี่ยวันเข้าพักมีค่าคงที่ มีค่าเท่ากับ 45 ดอลล่าห์สหรัฐ และ 4.5 วัน ตามลำดับ (Lao National Tourism Administration, 2009) โดยที่มูลค่า ผลประโิชน์ของการท่องเที่ยวคือ ผลคูณของอุปสงก์ท่องเที่ยวที่เพิ่มขึ้นเมื่อมีโครงการ ($\Delta \mathrm{T} \mathrm{rip}$) ซึ่งได้อากการประมาณ การณ์ ค่าใช้จง่ายเฉี่ยต่อนัวของนักท่องเที่ยวต่างหาติ และอัตราฉฉลี่ยวันเข้าพัก

มูลค่าผลประโยชน์ของการท่องเที่ยว $=$ จุปสงค์ท่องเที่ยวที่เพิ่มขึ้้ x ค่าใช้จ่ายเฉลี่ยต่อหัวของ นักท่องเที่ยวต่างชาติ x อัตราฉฉลี่ยวันเข้าพัก

ประเมินผลประโยชน์ทางด้านการท่องเที่ยวสุทธิเพื่อนำไปวิเคราะห์หาผลตอบแทนของโครงการ ด้วยการ หักค่าใช้จ่ายในการลงทุนที่เกี่ยวข้องกับการท่องเที่ยวบริการสาธารณะของภาครัฐีและสินค้าส่งออกที่เี่ยวข้องกับด้าน การท่องที่ยวสำหรับสปป.ลาว (โครงการปรับปรุงเละก่อสร้างถนนจากบ้านชวก (จ.พะเยา) -เมืองปากทา-เมืองปากคอบ-เมืองเชียงอ่อน-มืองคอบ สปป.ลาว, 2254 อ้างอิงจากการศึกษาของ World Travel \& Tourism Council ที่ศึกษา ผลประโยชน์จากการท่องเที่ยวช่วงปีพ.ศ. $2548-2558$) ซึ่งมีค่าเท่ากับร้อยละ 35 จากนั้นจึงปรับให้อยู่ในรูปมูลค่าทาง เศรษฐูกิด ด้วยตัวปรับค่า (Conversion Factor) ตามหัวข้อ 8.1 ซึ่งมีค่าเท่ากับ 0.95 โดยแสดงรายละอีียคคังตารางที่ $8.3-1$

ตารางที่ 8.3-1 มูลค่าผลประโยชน์จากการท่องเที่ยวของโครงการ

ปีที่	นักท่องเที่ยว ห้วยทราย หลวงพระบาง (คน) (1)	นักท่องเที่ยวที่ ท่าเรือปากแบ่ง (คน) (2)	จำนวนนักท่องเที่ยวที่ เปลี่ยนแปลงเพิ่มขึ้น เมื่อ มีโครงการ (คน) $(3)=0.51^{*}(1)+0.28^{*}(2)$	อัตราเจริญเติบโต ของนักท่องเที่ยว เมื่อมีโครงการ (\%)	ผลประโยชน์จากก (a้านตอละาร์สหวัฐ) $(5)=(3) * 45 * 4.5$	าารท่องเที่ยว (ล้าหบาท) $(6)=(5) * 31$	ผลประโยชน์จากการ ท่องเที่ยวสุทสิ (a้ามบาท) $(7)=(6) *(1-0.35) * 0.95$
1	63,790	33,321	12,544		2.54	78.75	48.63
2	67,007	35,002	26,354	5.04\%	5.34	165.44	102.16
3	70,388	36,402	46,139	5.04\%	9.34	289.64	178.85
4	73,938	37,858	48,466	5.04\%	9.81	304.25	187.87
5	77,668	39,372	50,911	5.04\%	10.31	319.59	197.35
6	81.586	40,947	53,479	5.04\%	10.83	335.72	207.30
7	85,702	42,585	56,177	5.04\%	11.38	352.65	217.76
8	90,025	44,289	59,011	5.04\%	11.95	370.44	228.75
9	94,567	46,060	61,988	5.04\%	12.55	389.13	240.29
10	99,337	47,903	65,115	5.04\%	13.19	408.76	252.41
11	104,349	49,819	68,400	5.04\%	13.85	429.38	265.14
12	109.613	51,811	71.850	5.04\%	14.55	451.04	278.52
13	115,142	53,884	75,475	5.04\%	15.28	473.79	292.57
14	120.951	56,039	79.282	5.04\%	16.05	497.69	307.33
15	127,052	58,281	83.282	5.04\%	16.86	522.80	322.83
16	133,461	60,612	87,483	5.04\%	17.72	549.17	339.11
17	140,194	63,036	91,896	5.04\%	18.61	576.88	356.22
18	147,266	65,558	96,532	5.04\%	19.55	605.98	374.19
19	154.695	68.180	101.401	5.04\%	20.53	636.55	393.07

- ที่มา: ที่ปรีกยา, 2554

 ปีที่ $1-3$ เป็นช่วงโปปรโมทเส้นทางโครงการเพื่อการท่องเที่ยว จำนวนนักท่องเที่ยวจึงงไม่เพิ่มขึ้นแต็มตามการคาดการณ์ โดยที่ในปีที่ 1 และ 2 จำนวนนักท่องเที่ยวปรับตัวเพิ่มขึ้นร้อยละ 30 และ 60 ของจำนวนนักท่องเที่ยวทั้งหมดที่คาดว่าจะเพิ่มขึ้นจากแบบจำลอง ส่วนปีที่ 3 เป็นปีที่จำนวนักท่องเที่ยวของโคงงการเริ่มเป็นไปตามแบบจำลองที่คาดการณ์

2) มูลค่าผลประโยชน์ทางเกษตรกรรม

กล่าวได้ว่าประชากรส่วนใหญ่ในพื้นที่ศึกษาของโครงการประกอบอาชีพในภาคเกษตรกรรมมากกว่า ในภาคอื่น จากข้อมูลที่สำรวจในพื้นที่ศึกษา (แขวงไซยะบุรี และแขวงหลวงพระบาง) พบว่าร้อยละ 80 ของ ประชากรทั้งหมดประกอบอาชีพเกษตรกรรม ส่วนที่เหลือประกอบอาชีพเป็นพนักงานรัฐ ค้าขาย และอาชีพบริการ อื่นๆ ทั้งนี้คาดว่าผลจากการอำนวยความสะดวกทางด้านการเดินทางและการเข้าถึงสถานที่ต่างๆ ได้ง่ายและคล่องตัว มากขึ้นจะส่งผลให้ภาคเกษตร ซึ่งเป็นภาคเศรษฐูกิจหลักของพื้นที่ศึกษาเจริญเติบโตควบคู่กับภาคบริการที่ปรับตัว เพิ่มขึ้น เพื่อรองรับการขยายตัวทางเศรษฐกิจของโรงงานไฟฟ้าเมืองหงสา

ทั้งนี้รูปแบบการลงทุนภาคเกษตรในสปป.ลาว และพื้นที่ึึกษานั้นประกอบด้วย 3 รูปแบบ คือ การลงทุน โดยเจ้าของที่ดิน การลงทุนด้วยการทำ Contract Farming และการขอสัมปทานที่ดินเพื่อเพาะปลูก ปัจจุบันสินค้า เกษตรที่กำลังขยายตัวและเป็นที่นิยมแก่นักลงทุนคือ ยางพารา และะังมีแนวโน้มว่ายางพาราจะกลายเป็นพืชเศรษฐูกิจ ที่สำคัญของสปป.ลาว เนื่องจากมีราคายางมีมูลค่าสูง สภาพภูมิอากาศและภูมิประเทศเหมาะสมแก่การเพาะปลูก ยางพารา (ส่วนวิเคราะห์ธุรกิจ ฝ่ายวิชาการ ธนาคารเพื่อการส่งออกและนำเข้าแห่งประเทศไทย, 2549) รวมทั้งความ ต้องการใช้ยางพาราของตลาดโลกอยู่ในระดับสูง โดยเฉพาะประเทคจีน จัดว่าเป็นประเทศผู้ที่นำเข้ายางพารามากเป็น อันดับ 1 ของโลก (United Nations Conference on Trade and Development: Unctad, 2011) เพื่อรองรับการขยายตัว ของจุตสาหกรรมผลิตยางรถยนต์ และผลิตภัน์์กี่ยวกับยางประเภทอื่นๆ ซึ่งปัจจุบันปริมาณผลผลิตของยางพาราใน ประเทคจีนยังไม่เพียงพอต่อความต้องการใช้ เนื่องจากพื้นที่ที่เหมาะสมในการปลูกยางในจีนมีจำกัดอยู่เฉพาะบริเวณ ทางใต้ของประเทศเท่านั้น และเมื่อพิจารณาจากรายได้ต่อเชกตาร์ของพืชเศรษฐูกิจที่สำคัญต่างๆของสปป.ลาว พบว่า ยางพารามีมูลค่ามากที่สุดด้วยเหตุนึ้งงเป็นเหตุผลสนับสนุนถึงความเป็นไปได้ที่เศรษฐูกิจในพื้นที่ศึกษาจะปรับตัวดี ขึ้นจากการขยายตัวการผลิตยางพารา

อย่างไรก็ตามรายได้จากการปลูกยางพาราจะเริ่มได้รับหลังจากเพาะปลูกในปีที่ 7 ดังนั้นช่วง 6 ปีแรกจึง สามารถเพาะปลูกพืชอื่นๆได้อาทิ ข้าวโพด ซึ่งถือว่าป็นพืชเศรษฐูกิเช่นกัน เนื่องจากเเ็นพืชที่ใช้ผลิตพลังงาน ไบ โอดีเซลและกำลังเป็นที่ต้องการของตลาด จึงทำให้ราคาปรับตัวขึ้นสูงในปัจจุบัน (www.indexmundi.com, 2011) แต่ การปลูกข้าวโพดมีข้อจำกัดโดยปลูกได้ไม่เกิน 2 ปี เนื่องจากเมื่อต้นยางพาราโต ก็จะทำให้ข้าวโพดไม่ได้รับแสงแดด จึงทำให้เหลือระยะเวลาอีก 4 ปีระหว่างรอรายได้จากยางพารา ซึ่งสามารถปลูกพืชเศรษรูกิจชนิคอื่นได้ คือ เสาวรส (Passion Fruit) เป็นพืชอีกชนิดหนึ่งที่กำลังเป็นที่นิยมเพาะปลูกเพื่อนำไปผลิตเป็นน้ำผลไม้ที่สปป.ลาวกำลังส่งเสริมให้ เป็นสินค้า OTOP หรือผลิตภัณฑ์ของชุมชน (จากการสัมภาษณ์) ดังนั้นการคาดการณ์แนวโน้มผลประโยชน์ทาง เกษตรกรรมของพื้นที่ศึกษาที่ได้รับผลจากการพัฒนาถนนโครงการ จึงพิจารณาจากรายได้ที่เพิ่มขึ้นของการเพาะปลูก ยางพารา ข้าวโพด และเสาวรสที่ขยายตัวเพิ่มขึ้นเป็นหลัก เนื่องจากที่ปรึกษาประเงินจากความเป็นไปได้ที่ประชากรใน พื้นที่กึกษาจะมีโอกาสเพาะปลูกพืชเศรษฐิกิจเหล่านี้มากขึ้น โดยกำหนดให้มัจจัยอื่นๆไม่เปลี่ยนแปลง ซึ่งอธิบาย ดังรูปที่ $8.3-1$

รูปที่ 8.3-1 แผนภูมิการประเมินผลประโยชน์ทางเกษตรกรรมเมื่มืมการพัฒนาถนนโกรงการ
จากรูปที่ $8-3$ อธิบายได้ว่าผลประโยชน์ทางงกษตรกรรมนี้คำนวณจากราขได้ที่เกิดขึ้นจากการขยายตัวของ การเพาะปลูกยางพารา ข้าวโพด และเสาวรส ซึ่งคาดว่าจะปรับตัวเพิ่มขึ้นมากกว่ากรณีที่ไม่มีการพัฒนาถนนโครงการ อันเนื่องมาจากผลของการพัฒนาถนนโครงการทำให้การเดินทางและการขนส่งวัตถุดิบ-ผลผลิตทางเกษตรกรรม สามารถเข้าถึงพื้นที่ทั้งสองฟั่งตลอดเนวเส้นทางของโครงการได้สะดวกและคล่องตัวในทุกคดูกาล ขณะที่รายได้ส่วน อื่นปรับตัวเพิ่มขึ้นอย่างเต็มประสิทธิภาพตามอัตราจริญเติบโตทางเศรษฐูกิจโดยรวมของแต่ละสาขา ทั้งนี้ขนาดพื้นที่ ที่ดินในพื้นที่ศึกษาพิจารณาที่ดินที่อยู่ในแนวถนนโครงการข้างละ 1 กิโลเมตร (เฉพาะพื้นที่ปีาผลิตของถนนโครงการ ซึ่งรวมพื้นที่ทั้งไซยะบุรี และหลวงพระบาง) ซึ่งเป็นระยะทางที่สามารณข้าถึงพื้นที่เพื่อทำเกษตรกรรมได้ ซึ่งมีอยู่ 11,000 เฮกตาร์ (แสดงพื้นที่เพาะปลูกดังรูปที่ $8-4$) ด้วยเหตุนี้จึึงสมมติฐานให้การมีถนนโครงการจะมีอิทธิพลให้การ เพาะปลูกยางพาราข้าวโพดและเสาวรสขยายตัวเต็มพื้นที่ที่กำหนดไว้ โดยที่การขยายพื้นที่เพาะปลูกเป็นอัตราการ ขยายตัวการปลูกยางพาราที่รีอยละ 20 ต่อปี (คำนวณจากข้อมูลการเพาะปลูกยางพาราช่วงปี $2007-2020$ ทั้งนี้พื้นที่ เพาะปลูกยางพาราในปีที่ 2020 อ้างอิงจาก Sustainable Mekong Research Network, 2009)

ทั้งนี้การวิเคราะห์ผลประโยชน์ที่เกิดจากการเพาะปลูกยางพาราต่อเฮกตาร์ แสดงรายละเอียดดังตารางที่ 8.3-2

รูปที่ 8-4 พื้นที่ป่าผลิตในเนวถนนโครงการข้างละ 1 กิโลเมตร

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.สาว)
ตารางที่ 8.3-2 ผลประโยชน์ของการเพาะปลูกยางพาราต่อ 1 เฮกตาร์
หน่วย: ล้านกีบต่อเฮกตาร์

ปีที่	$\begin{gathered} \text { ปี } \\ \text { พ.ต. } \end{gathered}$	ค่าาช้ำยในการลงทุนเพาะปปูกยางพารา (1)	รายได้ของการปลูกยางพารา (2)	ผลประโยชน์ของยางพาราสุทธิ $(3)=(2)-(1)$
1	2559	11.98		-11.98
2	2560	3.27		-3.27
3	2561	3.27		-3.27
4	2562	3.27		-3.27
5	2563	3.27		-3.27
6	2564	3.27		-3.27
7	2565	7.56	16.90	9.34
8	2566	7.56	16.90	9.34
9	2567	7.56	16.90	9.34
10	2568	7.56	16.90	9.34
11	2569	7.56	16.90	9.34
12	2570	7.56	16.90	9.34
13	2571	7.56	16.90	9.34
14	2572	7.56	16.90	9.34
15	2573	7.56	16.90	9.34
16	2574	7.56	16.90	9.34
17	2575	7.56	16.90	9.34
18	2576	7.56	16.90	9.34
19	2577	7.56	16.90	9.34
20	2578	7.56	16.90	9.34

หมายเหตุ: (I) เป็นค่าใช้จ่ายในการเพาะปลูกยางพาราต่อ I เฮกตาร์ของ "Rubber in the GMS: An Integrated Research Exercise on Rubber Development in Lao PDR". The Sustainable Mekong Research Network, 2009.
(2) เป็นผลคูมของ Yield (kg/ha) กับราคายางพารา (kip/kg) โดยที่ Yield อ้างอิงจากPara-Rubber Situation in Lao PDR Report, NAFRI, 2007 ส่วนราคายางพาราเป็นราคาปัจจุบันของตลาคซื้อขายยางพาราประเทศมาเลเซีย

จากนั้นจึงปปรับค่าเงินล้านกีบต่อเชกตาร์เป็นบาทต่อเชกตาร์ด้วออัตราแลกเปลี่ยน 8,000 กีบ เท่ากัับ 31 บาท แล้วจึงนำไปคูมกับขนาดพื้นที่เพาะปลูกยางพาราที่คาดว่าจะขยายตัวในแต่ละปี เพื่อประเมินมูลค่า ผลประโยชน์ทางการเกษตรของโครงการ ซึ่งแสดงดังตารางที่ $8.3-3$

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)
ตารางที่ 8.3-3 มูลผลประโยชน์ของการเพาะปลูกยางพาราเมื่อมีการพัฒนาถนนโกรงการ
หน่วย: ล้านบาท

ปีที่	ปีพ.ศ.	ค่าใช้จ่ายในการลงทุน เพาะปลูกยางพารา	รายได้ของการ ปลูกยางพารา	มูลค่าผลประโยชน์ สุทธิของยางพารา
1	2559	102.13	-	102.13
2	2560	130.01	-	130.01
3	2561	157.88	-	157.88
4	2562	185.76	-	185.76
5	2563	213.64	-	213.64
6	2564	139.38	-	139.38
7	2565	175.94	144.07	31.87
8	2566	212.50	288.15	75.64
9	2567	249.06	432.22	183.16
10	2568	285.62	576.29	290.67
11	2569	322.18	720.36	398.18
12	2570	322.18	720.36	398.18
13	2571	322.18	720.36	398.18
14	2572	322.18	720.36	398.18
15	2573	322.18	720.36	398.18
16	2574	322.18	720.36	398.18
17	2575	322.18	720.36	398.18
18	2576	322.18	720.36	398.18
19	2577	322.18	720.36	398.18
20	2578	322.18	720.36	398.18
	NPV	1,550.40	1,833.46	283.06

ที่มาาที่ปรีกมษา, 2554
หมายเหตุ: ค่าใช้่่ายในการลงทุนยางพารามม ที่นี้เป็นผลคูมของค่าใช้่่ายต่อเฮกตาร์กับพื้นที่เพาะปลูก โดยที่กำหนดให้ขยายตัวเพิ่มขึ้นร้อย ละ 20 ต่อปี (เป็นอัตราเติบโตของพื้นที่เพาะปลูกยางพาราที่สปป.ลาวคาดการม์ได้) ของพื้นที่ป่าผลิตทั้งหมดที่ในแนวถนนโครงการข้างละ 1 กิโลเมตรเป็น จำนวน 11,000 เฮกตาร์ ทั้งนี้ค่าใช้จ่ายในปีที่ 1 เป็นค่าใช้จ่ายเพาะปลูกยางพารา 2,200 เฮกตาร์ ปีที่ 2 เป็นค่าใช้จ่ายดูแลสวนยางที่ปลูกในปีที่ 1 และค่าใช้จ่าย เพาะปลูกที่เพิ่มขึ้นอีก 2,200 เฮกตาร์ต่อปี ไปเรี่อยาจนใช้ที่ดินที่เหลืออยู่จนหมด

ส่วนรายได้จากการเพาะปลูกยางพาราเป็นผลคูมของรายได้ต่อ I เฮกตาร์ กับพื้นที่ดินที่เพิ่มขึ้นในแต่ละปี ซึ่งจะได้รับหลังจาก เพาะปลูกไปแล้ว 7 ปีอธิบายได้ว่ารายได้ปีที่ 7 เป็นรายได้ที่เกิดจากเพาะปลูกยางพาราเพิ่มขึ้นในปีที่ 1 รายได้ในปีที่ 8 เป็นรายได้ที่เกิดจากเพาะปลูกยางพารา เพิ่มขึ้นในปีที่ 1 และ 2 เป็นอย่างนี้เรื่อยๆจนถึงปีที่ 11 เป็นรายได้ที่เกิดจากการเพาะปลูกยางพาราเพิ่มขึ้นในปีที่ $1,2,3,4$ และ 5 เนื่องจากการเพาะปลูก ยางพาราเพิ่มขึ้นร้อยละ 20 ต่อปีปำให้ใชัประโยชน์ที่ดินจากป๋าผลิตทั้งหมดจำนวน 11.000 เฮกตาร์หมด

เมื่อมีการเพาะปลูกข้าวโพดและเสาวรสช่วงปีที่ $1-6$ เพื่อให้เกษตรกรได้รับรายได้ส่วนหนึ่งในการ ยังชีพก่อนที่จะได้รับรายได้จากยางพาราในปีที่ 7 ซึ่งมีเงื่อนไขและรายละเอียดของค่าใช้ำยและรายได้ดังนี้

> 1) การเพาะปลูกข้าวโพด สามารถปลูกและเก็บเกี่ยวแบบปีต่อปีได้ไม่เกิน 2 ปี ต่อแปลง โดยที่มี ค่าใช้จ่ายเพื่อเพาะปลูกเท่ากับ 10,000 บาทต่อเฮกตาร์ต่อปี และมีรายได้เท่ากับ 40,000 บาทต่อ เฮกตาร่ต่อปี
2) การเพาะปลูกเสาวรส สามารถปลูกและเก็บเกี่ยวผลผลิต ได้ถึง 5 ปี ซึ่งรวมถึงปีที่เริ่มเพาะปลูกด้วย เมื่อเริ่มปีที่ 6 จึงเริ่มปลูกในแปลงนั้นๆใหม่ โดยที่แต่ละแปลงมีค่าใช้จ่ายเพื่อเพาะปลูกเท่ากับ 7,750 บาทต่อเฮกตาร์ ส่วนรายได้แบ่งเป็น
ปีที่ $1-2$ มีรายได้เท่ากับ 7,750 บาทต่อเฮกตาร์ ปีที่ $3-5$ มีรายได้เท่ากับ 15,500 บาทต่อเฮกตาร์ (ข้อมูลอ้างอิงจากการสัมภาษณ์)

ทั้งนฺ้พื้นที่เพาะปลูกข้าวโพดและเสาวรสคิดเป็น $3 / 4$ ของพื้นที่ปลูกยางพาราแต่ละปี การคำนวณแสดงดัง ตารางที่ 8.3-4

ตารางที่ 8.3-4 มูลผลประโยชน์ของการเพาะปลูกข้าวโพดและเสาวรส เมื่อมีการพัฒนาถนนโครงการ
หน่วย: ล้านบาท

ปีที่	ปีพ.ศ.	ค่าใช้อ่ายในการลงทุน เพาะปลูกข้าวโพด	รายได้ของการ ปลูกข้าวโพต	มูลค่าผลประโยชน์ สุทธิของข้าวโพด	ค่าใช้จ่ายในการลงทุน เพาะปลูกสาวรส	รายได้ของการ ปลูก เสาวรส	มูลค่าผลประโยชน์ ฮุทธิของเสาวรส
1	2559	18.40	74.17	55.77			-
2	2560	36.80	148.34	111.54			-
3	2561	36.80	148.34	111.54	12.79	12.79	-
4	2562	36.80	148.34	111.54	12.79	25.58	12.79
5	2563	36.80	148.34	111.54	12.79	51.15	38.36
6	2564	18.40	74.17	55.77	12.79	76.73	63.94
7	2565	-	-	-	12.79	76.73	63.94
8	2566	-	-	-	-	63.94	63.94
9	2567	-	-	-	-	51.15	51.15
10	2568	-	-	-	-	25.58	25.58
11	2569	-	-	-	-	-	-
12	2570	-	-	-	-	-	-
13	2571	-	-	-	-	-	-
14	2572	-	-	-	-	-	-
15	2573	-	-	-	-	-	-
16	2574	-	-	-	-	-	-
17	2575	-	-	-	-	-	-
18	2576	-	-	-	-	-	-
19	2577	-	-	-	-	-	-
20	2578	-	-	-	-	-	-
	NPV	125.55	506.07	380.52	46.10	226.37	143.71

ที่มา: ที่ารึกษา, 2554
หมายเหตุ: ค่าใช้จ่ายในการเพาะปลูกข้าวโพดต่อ 1 เยกตาร์เท่ากับ 2.88 ล้านกีบต่อปี หรือ 0.01 ส้านมาทต่อปี ซึ่งปรับให้เป็นมูลค่าปัจจุบัน จากค่าใช้จ่ายในการเพาะปลูกยางพาราในสปปปลาวที่แสดงใน Pre feasibility stud)" Department of Agriculture, 2008 จากนั้นจึงคูมกับพี้นที่เพาะปลูกที่ เพ่่มขึ้นตามยางพารา อธิบายได้ว่าค่าใช้จ่ายปลูกข้าวโพดปีที่ 1 เท่ากับ 18.40 ล้านบาทคือ 0.01 ล้านบาท $* 2,200$ เชกตาร์ $* 3 / 4$ (พื้นที่ที่นำมา ปลูกข้าวโพดเท่ากับ $3 / 4$ ของพื้นที่ปลูกยางพาราทั้งหมด)

ส่วนรายไต้อากการเพาะปลูกข้าวโพดเป็นผลคูมของ Yield (kg/ha) กับราคาข้าวโพดปัจคุบัน (kip/ha) ทั้งนี้ Yield และราคาข้าวโพดอ้างอิง ถาก www.indexmundi.com ซึ่งแสดง Yield ข้าวโพดของสปป.ลาว และราคาตลาดของข้าวโพดในปัจถุบัน

ตารางที่ $8.3-5$ มูลผลประโยชน์ทางเกษตรกรรม เมื่อมีการพัฒนาถนนโครงการ

ขูที่	ปีท.ศ.	ค่าใช้จ่ายในการลงทุน เพาะปจูกยางพารา	รายได้ของการ ปฮูกยางพารา	ค่าใช้อ่ายในการลงทุน เพาะปดูกข้าวโพด	รายได้ของการ ปดูกข้าวโพด	ค่าใช่อ่ายในการลงทุน เพาะปฏูเสาวรส	รายได้ของการ ปลูก เสาวรส	มูลค่าผลประโยชน์ สุทิิของเกษตรกรรม
1	2559	102.13	-	18.40	74.17			46.36
2	2560	130.01	.	36.80	148.34			18.47
3	2561	157.88	.	36.80	148.34	12.79	12.79	46.35
4	2562	185.76	.	36.80	148.34	12.79	25.58	61.44
5	2563	213.64	-	36.80	148.34	12.79	51.15	63.74
6	2564	${ }_{139.38}$	-	18.40	74.17	12.79	76.73	19.68
7	2565	175.94	144.07	-	.	12.79	76.73	32.07
8	2566	212.50	288.15	-	-	.	63.94	139.58
9	2567	249.06	432.22	-	-	-	51.15	234.31
10	2568	285.62	576.29	-	-	-	25.58	316.25
11	2569	322.18	${ }^{720.36}$.	-	-	-	398.18
12	2570	322.18	${ }^{2} 2.36$	-	-	-	.	398.18
13	2571	322.18	${ }_{720.36}$	-	.	-	.	398.18
14	2572	322.18	${ }_{720.36}$	-	.	.	.	398.18
15	2573	322.18	720.36	-	-	.	.	398.18
16	2574	322.18	720.36	-	.	-	-	398.18
17	2575	322.18	720.36	.	.	.	-	398.18
18	2576	322.18	720.36	398.18
19	2577	322.18	720.36	.	-	-	.	398.18
20	2578	322.18	720.36	.	.	.	-	398.18
	NPV	1.550.40	1,83,46	125.55	506.07	46.10	226.37	807.29

ที่มา: ที่ปรึกบา, 2554

นอกเหนือจากผลประโยชน์ทางตรงทั้งในส่วนของการจราจรและด้านเศรษฐูกิจ ซึ่งเป็นผลประโยชน์ โดยตรงที่เกิดขึ้นจากการ ทก่อสร้างปรับปรุงถนนโครงการ ยังมีผลประโัชน์ทางอ้อม (Indirect Benefit) ที่เกิดขึ้น แก่สังคมอีกด้วย ได้แก่

- การเพิ่มรายได้แก่คนในท้องถิ่น

กล่าวได้ว่าเส้นทางถนนโครงการหงสา-บ้านเชียงแมน คนท้องถิ่นส่วนมากประกอบอาชีพเกษตรกรรม ดังนั้นการพัฒนาถนน จึ่งทำให้อำนวยความสะดวกในการเดินทางและเคลื่อนย้ายบัจจัยการผลิตและผลผลิตเพิ่มขึ้น ทั้งนี้รายได้ที่เพิ่มขึ้นก็จะกระจายทั้งู้ที่ทร่ปะกอบอาชีพเกษตรกรรมและนอกภาคเกษตรกรรม ผลประโยชน์ที่เกิดขึ้น ในภาคเกษตรกรรมก็แสดงไว้ตามรายละเอียดข้างต้นแล้ว ส่วนที่อยู่นอกภาคเกษตรกรรม อาจมีรายได้จากการ ท่องเที่ยว และรายได้ส่วนอื่นๆนั้นได้ประมาณการณ์ไว้เป็นส่วนหนึ่งของการเจริญูเติบโตของผลิตภัณฑ์มวลรวม ระดับแขวงไซยะบุรีและหลวงพระบางแล้ว นอกจากนี้มูลค่าผลประโยชน์ที่เป็นรูปตัวเงินยังได้สะท้อนอยู่ใน

ผลประโยชน์ทางตรงทางการจราจรซึ่งได้แก่มูลค่าการประหยัดค่าใช้จ่ายในใช้ยานพาหนะและมูลค่าการ ประหขัดเวลาในการเดินทาง

- พัฒนาการค้าชายแดนและการท่องเที่ยว

เมื่อมีการพัฒนาถนนโครงการจะส่งเสริมให้การค้าและการท่องเที่ยวปรับตัวดีขึ้น ดังนั้นจึงอาจจะ กระตุ้นให้เกิดธุรกิจรองต่างๆเพิ่มขึ้นบริเวณเส้นทางโครงการและพื้นที่อิทธิพล เพื่อรองรับกับความ เจริญเติบ โต ทั้งด้านการค้าชายแดนและการท่องเที่ยว อาทิ ร้านค้าสะดวกซื้อ ตลาด ร้านอาหาร สถานี บริการน้ำมัน สถานที่พัก แรม และธุรกิจเช่ารถยนต์-รถจักรยานยนต์-จักรยาน นอกจากนี้อาจเกิดธุรกิจ ที่เกี่ยวข้องกับกิจกรรมเพื่อการ ท่องเที่ยวใหม่ๆ เช่น การจัดตั้งชุมชนหมู่บ้านที่คงรักษาวัฒนธรรมโบราณและปรับปรุงโบราณสถานต่างๆ เพื่อเป็น กิจกรรมให้นักท่องเที่ยวได้เข้าชมและสัมผัสกับ อารยธรรมของคนท้องถิ่น หรือกิจกรรมการท่องเที่ยวเชิงนิเวศน์ สำหรับกลุ่มนักท่องเที่ยวที่ต้องการ ใกล้ชิดกับธรรมชาติ ซึ่งอาจจัดที่พักแรมในลักษณะโฮมเสตย์และจัดให้ กิจกรรมเกี่ยวกับการเพาะปลูกหรือการสอนทำอาหารพื้นเมือง (แจ่วบอง, ข้าวจี่, เฝอ และข้าวปุ่น) ทั้งนี้ผลพลอยได้ ที่ได้จากการเกิด ธุรกิจรองต่างๆตามอัตราเติบโตของการค้าและการท่องเที่ยวนั้น ล้วนส่งผลให้เกิดการหมุนเวียน รายได้ของประชาชนในพื้นที่โครงการและพื้นที่อิทธิพล

- กระตุ้นพัฒนาเศรษฐกิจของเมือง

ช่วยลดต้นทุนในการขนส่งของภาคธุรกิจ และจูงใจให้เกิดการลงทุน ทำให้เกิดการจ้างงาน และ อุตสาหกรรมขยายตัวเพิ่มขึ้น ก่อให้เกิดการกระจายได้สู่ประชาชนมากขึ้น ส่งผลให้การบริโภคภาค ค รัวเรื อ น เพิ่มขึ้น และก่อให้เกิดผลประโยชน์ทางเศรษฐิกิที่เพิ่มขึ้นแก่ทั้ง สปป.ลาว และประเทศไทย

- ปรับปรงมาตรฐูานการดำรงชีวิต

ในการก่อสร้างปรับปรุงถนนโครงการ จะช่วยให้การเดินทางไปยังจุดหมายต่างๆในพื้นที่อิทธิพลของ โครงการสะดวกสบายมากขึ้น อันจะเป็นการเพิ่มมาตรฐานในการดำรงชีวิตของประชากรในชุมชนต่างๆ ที่เกี่ยวข้อง อาทิ การปรับปรุงมาตรฐานทางด้านสาธารณสุขของคนท้องถิ่นให้ดีขึ้น จากการที่มีสถานพยาบาลเพิ่มขึ้นอันเป็น ผลประโยชน์ทางอ้อมจากการก่อสร้างโครงการต่างๆ (เช่น โครงการเหมืองถ่านหินหงสาลิกไนต์) ซึ่งจะทำให้มี บุคลากร และอุปกรณ์ทางการแพทย์ที่จำเป็นต่อการดูแลสุขภาพของคนท้องถิ่นมากขึ้น นอกจากนี้ยังเป็นการ ส่งเสริมความรู้ทางด้านสาธารณสุขชุมชนแก่คนในท้องถิ่นเพิ่มมากขึ้น

เนื่องจากการพัฒนาถนนโครงการจะทำให้ผู้สัญจรเดินทางได้รับผลประโยชน์โดยตรงจากการ ประหขัดค่าใช้จ่ายในการใช้ยานพาหนะและลดระยะเวลาในการเดินทาง ซึ่งเป็นเหตุให้ต้นทุนการขนส่งปัจจัยการ ผลิตและผลผลิตต่ำลง และนำมาซึ่งการขยายตัวของภาคเกษตรกรรม อุตสาหกรรม และปศุสัตว์ แล้วยังทำให้ ประชาชนมีรายได้เพิ่มขึ้นและมาตรฐานการดำรงชีวิตดีขึ้นอีกด้วย โดยที่แม้ผลประโยชน์เหล่านี้จะไม่สามารถตีเป็น

มูลค่าทางการเงินได้ แต่ได้สะท้อนอยู่ในการเจริญูเติบโตทางเศรษฐูกิจหรืออัตราเจิิญูเติบโตของผลิตภัณฑ์มวลรวม ภายในประเทศแล้ว

8.4 การวิเคราะห์ผลตอบแทนของโครงการทางด้านเศรษฐกิจ

ที่ปร็กษาจะทำการวิเคราะห์ความเหมาะสมของโครงการด้านเศรษฐูกิจ โดยเปรียบเทียบค่าใช้จ่าย และ ผลประโยชน์ในรูปของมูลค่าทางเศรษรูกิจ ตลอดอายุโครงการ 20 ปี (ระยะเวลาการวิเคราะห์โครงการใช้ทั่วไป สำหรับถนนลาดยาง 2 ช่องจราจรของหน่วยงานต่างๆ เช่น โครงการงานสำรวอและออกแบบ ถนนสายแยก ทล. 331 -ทล. 3191 อ.ปลวกแดง จ.ระยอง, กรมทางหลวงชนบท หรือ โครงการเร่งรัดขยายทางสายประธานให้เป็น 4 ช่องจราจร (ระยะที่ 2) ทางหลวงหมายเลข 12 ตอน อ.หล่มสัก-แยก อ.คอนสาร, กรมทางหลวงชนบท) ทั้งนี้ในการ พิจารณาความเหมาะสมด้านเศรษรกิจของโครงการได้พิจารณาจากตัวชี้วัด ดังนี้

1) มูลค่าปัจจุบันสุทธิ (Net Present Value: NPV)

มูลค่าบ๊จจุบันหมายถึง ผลต่างระหว่างผลประโชชน์และค่าใช้จ่ายในปีค่างๆ เมื่อคิดเป็นมูลค่าขัจจุบัน ตลอออายุโครงการ โดยใช้อัตาส่วนลด (Discount Rate) เพื่อประเมินเป็นมูลค่าปัจจุบัน

$$
N P V=\sum_{t=1}^{n} \frac{B_{t}-C_{t}}{(1+i)^{t}}
$$

โดยที่

$$
\begin{aligned}
& \mathrm{NPV}=\text { มูลค่าปัจจุบันสุทธิของโครงการ } \\
& B_{t}=\text { ผลประโขชน์จากโครงการในปีที่ } t \\
& \mathrm{C}_{\mathrm{t}}=\text { ค่าใช้จ่ายของโครงการในปีที่ } \mathrm{t} \\
& \text { i }=\text { อัตราดอกเบื้ยหรืออัตราผลตอบแทนของโครงการ } \\
& \mathrm{n}=\text { อายุของโครงการ }
\end{aligned}
$$

ถ้าโครงการลงทุนมีมูลค่าปัจจุบันสุทธิเป็นบวกหรือมากคว่าศูนย์ แสดงว่าโครงการนั้นมีความ เหมาะสมในการลงทุน กล่าวคือเมื่อลงทุนไปแล้วมีผลประโยชน์มากกว่าค่าใช้จ่ายตลอดอายุโกรงการ

อย่างไรก็ตาม การประเมินโครงการโดยใช้มูลค่าเงินสุทธิบัจจุบัน ัังไม่สามารถเปรียบเทียบโครงการที่ มีค่าลงทุนที่แตกต่างกันมากได้เค่นชัด เนื่องจากโครงการที่มีขนาดใหญ่ย่อมให้มูลค่าปัจจุบันสูงกว่าโครงการที่มี ขนาคเล็กกว่ามาก ถึงแม้ว่าโครงการทั้งสองจะมีอัตราผลตอบแทนเท่ากัน การประเมินผลด้านเศรษฐูศาสตร์จึงควร พิจารณาดัชนีทางด้านเศรษฐูศาสตร์อื่นประกอบด้วย
2) อัตราส่วนระหว่างมูลค่าปัจจุบันของผลประโยชน์ต่อค่าใช้จ่าย (Benefit Cost Ratio: B/C Ratio)

อัตราส่วนผลประโยชน์ต่อค่าใช้จ่าย หมายถึง อัตราส่วนของผลประโยชน์เมื่อคิดเป็นมูลค่าปัจจุบันต่อ มูลค่าปัจจุบันของค่าใช้จ่ายของโครงการ โดยใช้อัตราส่วนลด (Discount Rate) เพื่อประเมินเป็นมูลค่าปัจจุบัน

$$
\mathrm{B} / \mathrm{C}=\frac{\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{~B}_{\mathrm{t}}}{(1+\mathrm{i})^{\mathrm{t}}}}{\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{C}_{\mathrm{t}}}{(1+\mathrm{i})^{\mathrm{t}}}}
$$

โดยที่
$B / C=$ อัตราส่วนระหว่างมูลค่าปัจจุบันของผลประโยชน์ต่อค่าใช้จ่าย
$B_{t}=$ ผลประโยชน์จากโครงการในปีที่ t
$C_{t}=$ ค่าใช้จ่ายของโครงการในปีที่ t
$\mathrm{i}=$ อัตราดอกเบี้ยหรืออัตราผลตอบแทนของโครงการ
$\mathrm{n}=$ อายุของโครงการ
ถ้าโครงการลงทุนมีอัตราส่วนผลประโยชน์ต่อค่าใช้จ่ายมากกว่าหนึ่ง แสดงว่าโครงการนั้นมีความ เหมาะสมในการลงทุน

3) อัตราผลตอบแทนทางเศรษฐกิจของโครงการ (Economic Internal Rate of Return: EIRR)

อัตราผลตอบแทนทางเศรษฐกิจของโครงการ หมายถึง อัตราผลตอบแทนภายใน ซึ่งคือ อัตราส่วนลด (Discount Rate) ที่ทำให้มูลค่าปัจจุบันของผลประโยชน์และมูลค่าปัจจุบันของค่าใช้จ่ายเท่ากันพอดี

$$
\operatorname{EIRR}=\mathrm{i} ; \mathrm{NPV}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\mathrm{~B}_{\mathrm{t}}-\mathrm{C}_{\mathrm{t}}}{(1+\mathrm{i})^{\mathrm{t}}}=0
$$

โดยที่

EIRR	$=$ อัตราผลตอบแเทนทางเศรษฐูกิจของโครงการ
B_{t}	$=$ ผลประโยชน์จากโครงการในปีที่ t
C_{t}	$=$ ค่าใช้จ่ายของโครงการในปีที่ t
i	$=$ อัตราดอกเบี้ยหรืออัตราผลตอบแทนของโครงการ
n	$=$ อายุของโครงการ

ค่าเสียโอกาสของเงินลงทุนที่ใช้ในการศึกษาเท่ากับร้อยละ 12 ต่อปี ซึ่งเป็นอัตราที่เคยมีการศึกษาถึงต้นทุน ของเงินลงทุนในประเทศไทย โดยธนาคาร โลกและสำนักงานคณะกรรมการพัตนาการเศรษฐกิจและสังคมแห่งชาติ

4) ระยะเวลาคืนทุน (Payback Period: PB)

งวดระยะเวลาคืนทุนแบบงวดเวลา เป็นวิธีการประเมินหาระยะเวลา ณ จุดที่ก่อให้เกิดผลประโยชน์ เท่ากับค่าใช้จ่ายในการลงทุนของโครงการพอดีโดยคำนึงถึงรายรับและรายจ่ายที่เพิ่มขึ้นไม่เท่ากันในแต่ละปี ซึ่ง แสดงดังนี้

ระยะเวลาคืนทุน $=$ จำนวนปีก่อนคืนทุน + (มูลค่าปัจจุบันสุทธิของกระแสเงินสดคงเหลือ ก่อนปีที่คืนทุน / มูลค่าปัจจุบันสุทธิของกระแสเงินสดในปีที่คืนทุน)

- ผลการวิเคราะห์โครงการทางด้านเศรษฐกิจ

การวิเคราะห์โครงการทางด้านเศรษฐูกิจสามารถอธิบายผ่านค่าดัชนีชี้วัดทางเศรษฐูกิจ ซึ่งประเมินผลจาก ค่าใช้จ่ายในการลงทุนของ โครงการและผลประโยชน์ตอบแทนทางด้านจราจรและทางด้านเศรษฐกิจตลอดอายุ โครงการ โดยใช้วิธี Discounted Cash Flow ซึ่งวิธีที่ใช้กันทั่วไปในการวิเคราะห์ความเหมาะสมของโครงการทางด้าน เศรษฐูกิจ โดยแสดงรายละเอียดค่าใช้จ่ายของโครงการทางการเงิน ดังตารางที่ 8.4-1

โครงการศึกษาความเป็นไปได้และออกแบบเบื้องตัน

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)
ตารางที่ 8.4-1 ค่าใช้จ่ายในการลงทุนของโครงการด้านการเงิน
ค่าลงทุนโครงการ มูคค่าทางการเงิน (ล้านบาท)

ปีที่	ปี พ.ศ.	ค่าควบคุมงาน	ค่าชดเชย อาคาร	ค่าตรวจสอบติดตาม สิ่งแวดล้อม	ค่าก่อสร้าง	ค่าบำรุงรักษาราขีปี	ค่าบำรุงรักษาตาม ช่วงเวลา	รวมค่าลงทุนรายีี
1	2556	22.5	5.4	1.5	641.8	-	-	671.1
2	2557	22.5	-	0.7	641.8	-	-	664.9
3	2558	22.5	-	0.7	641.8	-	-	664.9
4	2559	-	-	2.4	-	11.4	-	13.8
5	2560	-	-	2.4	-	11.4	-	13.8
6	2561	-	-	2.4	-	11.4	31.9	45.7
7	2562	-	-	2.4	-	11.4	-	13.8
8	2563	-	-	2.4	-	11.4	-	13.8
9	2564	-	-	-	-	11.4	31.9	43.3
10	2565	-	-	-	-	11.4	175.6	187.0
11	2566	-	-	-	-	11.4	-	11.4
12	2567	-	-	-	-	11.4	31.9	43.3
13	2568	-	-	-	-	11.4	-	11.4
14	2569	-	-	-	-	11.4	-	11.4
15	2570	-	-	-	-	11.4	31.9	43.3
16	2571	-	-	-	-	11.4	-	11.4
17	2572	-	-	-	-	11.4	175.6	187.0
18	2573	-	-	-	-	11.4	31.9	43.3
19	2574	-	-	-	-	11.4	-	11.4
20	2575	-	-	-	-	11.4	-	11.4
21	2576	-	-	-	-	11.4	31.9	43.3
22	2577	-	-	-	-	11.4	-	11.4
23	2578	-	-	-	-	11.4	-	11.4
		67.4	5.4	14.9	1.925 .3	228.0	542.6	2,783.6

ที่มา: ที่ปรีกษา, 2554

จากนั้นจึงปรับค่าใช้จ่ายทางการเงินให้อยู่ในรูปของค่าใช้จ่ายทางด้านเศรษฐกิจ โดยคูณกับ Conversion Factor ซึ่งเป็นตัวปรับค่าใช้จ่ายของโครงการในรูปการเงินให้เป็นต้นทุนที่แท้จริงของทรัพยากรที่นำมาใช้ในการดำเนิน โครงการ โดยหักค่าใช้จ่ายที่เป็นรายการเงินโอนต่างๆ ทั้งนี้แสดงค่าใช้จ่ายทางด้านเศรษฐูกิจดังตารางที่ 8.4-2

รายงานขั้นสุดท้าย (Final Report)
โครงการศึกษาความเป็นไปได้และออกแบบเบื้องต้น
โครงการพัฒนาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)
ตารางที่ 8.4-2 ค่าใช้จ่ายในการลงทุนของโครงการด้านเศรษฐูิจ
ค่าลงทุนโครงการ มูลค่าทางเศรษฐูกิจ (ล้านบาท)

ปีที่	ปี พ.ศ.	ค่าควบคุมงาน	ค่าเวนคืน อาคาร	ค่าตรวจสอบติดตาม สั่งแวคล้อม	ค่าก่อสร้าง	ค่าบำรุงรักษา รายปี	ค่าบำรุงรักษาตาม ช่วงเวลา	รวมค่าลงทุน รายปี
1	2556	21.3	4.8	1.4	609.7	-	-	637.2
2	2557	21.3	-	0.7	609.7	-	-	631.7
3	2558	21.3	-	0.7	609.7	-	-	631.7
4	2559	-	-	2.3	-	10.8	-	13.1
5	2560	-	-	2.3	-	10.8	-	13.1
6	2561	-	-	2.3	-	10.8	30.3	43.4
9	2562	-	-	2.3	-	10.8	-	13.1
8	2563	-	-	2.3	-	10.8	-	13.1
9	2564	-	-	-	-	10.8	30.3	41.2
10	2565	-	-	-	-	10.8	166.8	177.6
11	2566	-	-	-	-	10.8	-	10.8
12	2567	-	-	-	-	10.8	30.3	41.2
13	2568	-	-	-	-	10.8	-	10.8
14	2569	-	-	-	-	10.8	-	10.8
15	2570	-	-	-	-	10.8	30.3	41.2
16	2571	-	-	-	-	10.8	-	10.8
17	2572	-	-	-	-	10.8	166.8	177.6
18	2573	-	-	-	-	10.8	30.3	41.2
19	2574	-	-	-	-	10.8	-	10.8
20	2575	-	-	-	-	10.8	-	10.8
21	2576	-	-	-	-	10.8	30.3	41.2
22	2577	-	-	-	-	10.8	-	10.8
23	2578	-	-	-	-	10.8	-	10.8
	รวม	64.0	4.8	14.2	1,829.0	216.6	515.5	2,644.1

ที่มา: ที่ปรีกยา, 2554

โครงการพัฒนาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาชนลาว (สปป.ลาว)

ตารางที่ 8.4-3 การวิเคราะห์โครงการด้านเศรษฐูกิจ

ราคาด้านเตรษฐกิจของค่าลงทุนโกรงการ (ราคา ญ ปี 2554)			เปิดใช้ถนนโครงการ ปี พ.ศ. 2559	ระยะทาง 114 กม.	
ค่าออกแบบรายละเิียด	0	ล้านบาท	ชัตราผลตอบแทนทางเศรหฐกิจ (EIRR)	14.74\%	
ค่าก่อสร้างและควบคุมงาน	1,897.85	ล้านบาท	มูลค่าปัจจุบันฐุทธิ (NPV)	498	ล้านบาท
ค่าจัดกรรมสิทิิทิ่ดินและชดเชยทรัพธ์สิน	4.81	ล้านบาท	อัตราส่วนประโยชน์ต่อค่าใช้จ่าย (B/C)	1.30	
ค่าใช้จ่ายด้านธิ่งแวดล้อม (ตลอดอยยูโครงการ)	14.16	ล้านบาท	ระยะเวaาดืนทุน (Payback Period)	11.44	ปี หน่วข: : ล้ามบาท

ปีที่ ตำเนินการ	ต้นทุน			ผลประโยชน์					มูค่าธุทีิ	FYRR
	ค่าลงทุน ก่อสว้าง	ค่าใข้อ่ายในการบ่ารุงวักมา และมาตรการสิ่งแวตล้อม	รวม	มูลค่าของเวดา ที่ประหขัดได้	มูลค่าของการใช้รถ ที่ประทบัดได้	มูลค่าสุทบิของการ ขอายตัวด้านการเกตตร	มูลท่าการท่องเทียยว ที่เพิ่มขึ้น	ผลปวะโขชน์รวม		
1	(635.82)	(1.42)	(637.24)	-	-	-	-	-	(637.24)	
2	(631.02)	(0.67)	(631.69)	-	-	-	-	-	(631.69)	
3	(631.02)	(0.67)	(631.69)	-	\checkmark	-	-	-	(631.69)	
4	-	(13.13)	(13.13)	15.13	59.13	(41.26)	48.63	81.63	68.49	3.58
5	-	(13.13)	(13.13)	15.75	62.10	(16.44)	102.16	163.58	150.44	7.86
6	-	(43.42)	(43,42)	16.40	65.23	(41.25)	178.85	219.23	175.81	9.19
7	-	(13.09)	(13.09)	17.07	68.51	(54.68)	187.87	218.78	205.68	10.75
8	-	(13.09)	(13.09)	17.77	71.96	(56.73)	197.35	230.35	217.26	11.35
9	-	(41.15)	(41.15)	18.66	75.52	(17.51)	207.30	283.96	242.81	12.69
10	-	(177.61)	(177.61)	19.58	79.25	28.54	217.76	345.14	167.53	8.75
11	-	(10.83)	(10.83)	20.56	83.17	124.23	228.75	456.70	445.87	23.30
12	-	(41.15)	(41.15)	21.58	87.28	208.53	240.29	557.68	516.53	26.99
13	-	(10.83)	(10.83)	22.66	91.60	281.46	252.41	648.12	637.29	33.30
14	-	(10.83)	(10.83)	23.61	95.62	354,38	265.14	738.76	727.93	38.04
15	-	(41.15)	(41.15)	24.61	99.82	354.38	278.52	757.33	716.18	37.42
16	-	(10.83)	(10.83)	25.65	104.20	354.38	292.57	776.80	765.97	40.02
17	-	(177.61)	(177.61)	26.73	108.78	354.38	307.33	797.22	619.61	32.38
18	-	(41.15)	(41.15)	27.86	113.56	354.38	322.83	818.63	777.48	40.63
19	-	(10.83)	(10.83)	29.28	120.36	354.38	339.11	843.14	832.31	43.49
20	-	(10.83)	(10.83)	30.78	127.58	354.38	356.22	868.96	858.13	44,84
21	-	(41.15)	(41.15)	32.35	135.22	354.38	374.19	896.14	854.99	44.68
22	-	(10.83)	(10.83)	34.00	143.32	354.38	393.07	924.77	913.94	47.76
23	914.51	(10.83)	903.68	35.73	151.91	354.38	412.90	954.92	1,858.61	97.12
	(1,452.40)	(190.08)	(1,642.48)	107.50	434.15	511.41	1,087.81	2,140.87	498.39	

ที่มา: ที่ปรึกษา, 2254
หมายเหตุ: มูลค่าสุทิิของการขยาาตัวด้านการเกษตร เป็นผลลบระหว่างรายได้และค่าใช้จ่ายของการเพาะปลูกยางพาราพิ่มขึ้น

ผลการวิเคราะห์โครงการ พบว่า

EIRR	$=14.74 \%$
NPV	$=498$ ล้านบาท
B / C Ratio	$=1.30$
Payback Period	$=11.44$ ปี

จึงสรุปได้ว่าโครงการงมีความเป็นไปได้านการก่อสร้างเนื่องจากค่าดัชนีชี้วัดทางเศรษฐิคิจสูงกว่าเกณฑ์ ที่กำหนดไว้ โดยที่อัตราผลตอบแทน (EIRR) มีค่ามากถึงร้อยละ 12 มูลค่าบัจจุบันสุทธิ (NPV) มีค่าเป็นบวก และ อัตราส่วนผลประโยชน์ต่อค่าใช้จ่าย (B/C ratio) มีค่ามากกว่า 1

- การวิเคราะห์ความอ่อนไหวของโครงการ

งานวิเคราะห์ค่าความอ่อนไหวด้านเศรษฐกิจของโครงการ ที่ปรึกษาจะทำการวิเคราะห์ความอ่อนไหว ของโครงการจากกรณีพื้นฐานเพื่อนำมาใช้เป็นข้อมูลประกอบในการพิจารณาตัดสินใจในการดำเนินการ โดย กำหนดให้เกิดการแปรเปลี่ยนไปของตัวแปรต่างๆ อันส่งผลกระทบต่อโครงการ เช่น ปริมาณจราจร จำนวน นักท่องเที่ยว อัตราการเข้าพักเฉลี่ย มูลค่าการค้าราคาน้ำมัน และอัตราเจริญเติบโตทางเศรษฐกิจ ทั้งนี้สมมติฐานให้ การเปลี่ยนแปลงของปัจจัยภายนอกต่างๆนี้ส่งผลกระทบต่อโครงการ โดยทำให้ค่าใช้จ่ายในการลงทุนและ/หรือ ผลประโยชน์ของโครงการเพิ่มขึ้นและ/หรือลดลง และนำมาซึ่งผลการวิเคราะห์โครงการผ่านตัวชี้วัดทางเศรษฐูกิจที่ เปลี่ยนแปลงไป ทั้งนี้การวิเคราะห์ความอ่อนไหวของโครงการที่ปรึกษาพิจารณาเหตุการณ์ในแง่ลบต่อ โครงการ โดยตั้งสมมติฐานดังนี้

กรณีที่ 1 สมมติฐานให้ผลประโยชน์ทางด้านการท่องเที่ยวหรือรายได้จากมูลค่าการท่องเที่ยวปรับตัว ลดลงร้อยละ 10 อันเนื่องมาจากวิกฤติเศรษฐกิจ ส่งผลให้ค่าใช้จ่ายเฉลี่ยของนักท่องเที่ยวและ/หรืออัตราวันพักแรม เฉลี่ยลดลง โดยที่กำหนดให้ปัจจัยอื่นนอกเหนือจากนี้ รวมถึงค่าใช้จ่ายในการลงทุนของโครงการคงที่

กรณีที่ 2 สมมติฐานให้มูลค่าผลประโยชน์สุทธิการเกษตรลดลง ร้อยละ 10 อันเนื่องมาจากเศรษฐูกิจ ตกต่ำและภาวะเงินเฟ้อ โดยที่กำหนดให้ปัจจัยอื่นนอกเหนือจากนี้ รวมถึงค่าใช้จ่ายในการลงทุนของโครงการคงที่

กรณีที่ 3 สมมติฐานให้เกิดวิกฤติเศรษฐกิจ ซึ่งส่งผลให้ทั้งผลประโยชน์ทางด้านการท่องเที่ยวและ มูลค่าผลประโยชน์สุทธิการเกษตรลดลงร้อยละ 10 โดยที่กำหนดให้ปัจจัยอื่นนอกเหนือจากนี้ รวมถึงค่าใช้จ่ายใน การลงทุนของ โครงการคงที่

กรณีที่ 4 สมมติฐานให้เสถียรภาพทางเศรษฐกิจตกต่ำ และเกิดภาวะเงินเฟ้อในประเทศ จึงเป็นเหตุให้ ค่าใช้จ่ายในการลงทุนโครงการเพิ่มขึ้นร้อยละ 10 โดยที่กำหนดให้มูลค่าผลประโยชน์ของโครงการคงที่

กรณีที่ 5 สมมติฐานให้เกิดวิกฤติเศรษฐกิจ และเกิดภาวะเงินเฟ้อ จึงเป็นเหตุให้ผลประโยชน์ทางด้าน การท่องเที่ยวหรือรายได้จากมูลค่าการท่องเที่ยวปรับตัวลดลงร้อยละ 10 โดยที่กำหนดให้ปัจจัยอื่นๆทางด้าน ผลตอบแทนคงที่ ขณะที่ค่าใช้จ่ายในการลงทุนของโครงการได้รับผลกระทบจากวิกฤติเศรษฐกิจเช่นกัน ซึ่งส่งผล ให้ค่าใช้จ่ายในการลงทุนเพิ่มขึ้นร้อยละ 10

กรณีที่ 6 สมมติฐานให้เกิดวิกฤติเศรษฐกิจ และเกิดภาวะเงินเฟ้อ จึงเป็นเหตุให้มูลค่าผลประโยชน์ สุทธิการเกษตรปรับตัวลดลงร้อยละ 10 โดยที่กำหนดให้ปัจจัยอื่นๆทางด้านผลตอบแทนคงที่ ขณะที่ค่าใช้จ่ายใน การลงทุนของโครงการได้รับผลกระทบจากวิกฤติเศรษฐูกิจเช่นกัน ซึ่งส่งผลให้ค่าใช้จ่ายในการลงทุนเพิ่มขึ้นร้อยละ 10

กรณีที่ 7 สมมติฐานให้เกิดวิกฤติเศรษฐกิจ และเกิดภาวะเงินเฟ้อ จึงเป็นเหตุให้ทั้งผลประโยชน์ ทางด้านการท่องเที่ยวและมูลค่าผลประโยชน์สุทธิการเกษตรปรับตัวลดลงร้อยละ 10 โดยที่กำหนดให้ปัจจัยอื่นๆ

โครงการพัฒมาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระบาง) สาธารณรัธประชาธิปไตยประชาขนลาว (สปป.ลาว)
ทางด้านผลตอบแทนคงที่ ขณะที่ค่าใช้จ่ายในการลงทุนของโครงการได้รับผลกระทบจากวิกฤติเศรษฐูกิจเช่นกัน ซึ่ง ส่งผลให้ค่าใช้จ่ายในการลงทุนเพิ่มขึ้นร้อยละ 10

กรณีที่ 8 สมมติฐานให้มูลค่าผลประโยชน์ทางการเกษตรเป็นรายได้ที่เกิดจากการเพาะปลูกยางพารา และข้าวโพดเพิ่มขึ้น

ตารางที่ 8.4-4 ผลการวิเคราะห์ความอ่อนไหวของโครงการทางเศรษฐิิจ

ดัชนีชี้วัดทางเศรษฐกิจ	กรณีที่ 1	กรณีที่ 2	กรณีที่ 3	กรณีที่ 4	กรณีที่ 5	กรณีที่ 6	กรณีที่ 7
EIRR (ร้อยละ) $=$	14.17%	14.51%	13.92%	13.73%	13.18%	13.50%	12.93%
NPV (ล้านบาท) $=$	390	447	338	335	226	283	175
B/C Ratio (อัตราส่วน) $=$	1.24	1.27	1.21	1.19	1.12	1.16	1.10
Payback Period (ปี) $=$	11.74	11.44	11.75	11.88	12.16	11.90	12.19

ที่มา: ที่ปรึกยา, 2554

เมื่อพิจารณาการเปลี่ยนแปลงของตัวแปรทางด้านต้นทุนและผลประโยชน์ของโครงการในแง่ลบใน การวิเคราะห์ความอ่อนไหวของโครงการ สรุปได้ว่าโครงการขังคงมีความเหมาะสมในการลงทุน เนื่องจากดัชนี ชี้วัดทางเศรษฐูกิจสูงกว่าเกณฑ์ที่กำหนด แม้แต่กรมีที่เลวร้ายที่สุด (ผลประโยชน์จากการท่องเที่ยวและเกษตรกรรม ปรับตัวลดลงร้อยละ 10 และต้นทุนเพิ่มขึ้นร้อยละ 10) ยังพบว่าดัชนีชี้วัดทางเศรษฐูกิจสูงกว่าเกณฑ์ที่กำหนดไว้ โดยที่ค่า EIRR มีค่าเท่ากับร้อยละ 12.93 NPV เท่ากับ 175 ล้านบาท และ B / C Ratio เท่ากับ 1.1 ซึ่งแสดงให้เห็นว่า ผลประโยชน์ที่ได้รับสามารถชดเชยให้กับต้นทุนที่เสียไป

บทที่ 9 การศึกษาแนวเส้นทางใหม่ตามแผนการพัฒนาเมืองจอมเพชร

9.1 สภาพทั่วไป และเศรษฐกิิ-สังงคมของเมืองจอมเพชร

ทิ่ต้้ง

 เนื้อที่ทั้งหมด $1,241.10$ ตารางกิโโเมมตร ประกอบด้วช 69 หมู่ท้าน มีเขตติดท่อดังนี้

- ทิศเหนือ ติดกับเมืองงา แขวงอุดมไซย
- ทิศใต้ ติดกับแขวงไซยะุุลี
- ทิศตะวันออก ติดกับเมืองหลวงพระบาง
- ทิศตะวันตก ติดกับเมืองหงสา แขวงไซยะบุลี

สภาพทางด้านมูิคาสตร์

แยกใกล้กับสำนักงานพัฒนาชนบท อย่างไรก็ตามโดยภาพรวมแล้ว เมืองจอมเพชรยังมีพื้นที่กว้างพอสำหรับการ พัฒนาที่อยู่อาศัยและขยายตัวเมืองในอนาคต

ประชากร
ปี 2005 พบว่ามีจำนวนประชากรทั้งหมด 28,778 คน (ประมาณ 4,796 ครอบครัว) ซึ่งแบ่งเป็นลาวลุ่ม ร้อยละ 45 ลาวเทิงร้อยละ 40 และลาวสูงร้อยละ 15 โดยประชาชนส่วนใหญ่นับถือศาสนาพุทธ

สภาพเศรษฐกิจ

พบว่ามีอัตราการขยายตัวทางเศรษฐูกิจของเมืองจอมเพชรอยู่ในระดับต่ำ ประชาชนส่วนใหญ่ประกอบ อาชีพกสิกรรมประมาณ ทั้งนี้พบว่าร้อยละ 65 ของครัวเรือนมีรายได้จากการเพาะปลูกและเลี้ยงสัตว์ ร้อยละ 25 ของ ครัวเรือนมีรายได้จากการทำงานเป็นพนักงานและบริการ ส่วนที่เหลืออีกร้อยละ 10 ของครัวเรือนมีรายได้จากอาชีพ การค้าปลีก

สินค้านำเข้าที่สำคัญของเมืองจอมเพชร: เครื่องมือเครื่องใช้ในการเกษตร น้ำมันเชื้อเพลิง อะไหล่ รถจักรยาน วัสดุอุปกรณ์ก่อสร้าง เครื่องอุป โภคบริโภค เครื่องจักรกล และสินค้าอื่นๆ

สินค้าส่งออกที่สำคัญของเมืองจอมเพชร: ผลผลิตจากกสิกรรมและการเลี้ยงสัตว์ ผลิตภัณฑ์จากป่า (งา ลูกเดือย ข้าวโพด ตาว ไม้กวาด ปอสา ยางไม้) นอกจากนี้ยังมีเนื้อหมู วัว และควายอีกด้วย

โครงสร้างพื้นฐานของเมืองจอมเพชร

1) เส้นทาง

ระบบถนนในเมืองจอมเพชรยังมีน้อย ส่วนใหญ่เป็นถนนดิน-ลูกรัง ซึ่งสามารถใช้เดินทางสัญจรได้ เฉพาะฤดูแล้ง เนื่องจากไม่มีสะพานข้ามลำน้ำ โดยสรุปรูปแบบของถนนที่เมืองจอมเพชรได้ว่า

ถนนลูกรัง	ยาว 96.15 กิโลเมตร	กว้าง	5.5 เมตร
ถนนดิน	ยาว 90.50 กิโลเมตร	กว้าง	$3-4$ เมตร

2) การคมนาคมขนส่ง

มีการคมนาคมขนส่งทั้งทางบกและทางน้ ปัจจุบันเมืองจอมเพชรมีรถโดยสารขนาด 20 ที่นั่ง จำนวน 2 คัน รถโดยสารขนาด 25 ที่นั่ง จำนวน 20 คัน รถตุ๊กตุ๊กขนาด 6 ที่นั่ง จำนวน 11 คัน รถโดยสารขนาด 15 ที่นั่ง จำนวน 2 คัน และรถโดยสารขนาด 35 ที่นั่ง จำนวน 2 คัน

การคมนาคมทางบคภายใน (ปี 2006)

ลำดับที่	ประเภทรถ	ปลายทางการเดินรถ	ระยะทาง (กม.)	จำนวนรถ (คัน)	จำนวนเที่ยว ต่อวัน
1	รถโดยสารขนาด 34 ที่นั่ง	เชียงแมน - บ้านหลัก 62	72	2	6
2	รถโดยสารขนาด 25 ที่นั่ง	เชียงแมน - บ้านหลัก 62	72	22	6
3	รถโดยสารขนาด 20 ที่นั่ง	เชียงแมน - บ้านห้วยถ้ำ	14.4	12	6
		เชียงแมน - บ้านหลัก 62	72		
4	รถโดยสารขนาด 15 ที่นั่ง	เชียงแมน - นาไซ	7	2	7
	รถโดยสารขนาด 9 ที่นั่ง	เชียงแมน - ท่าโพ	5	8	

3) ระบบไฟฟ้า

ปัจจุบันมีจำนวน 12 หมู่บ้านภายในเมืองจอมเพชรที่ใช้ไฟฟ้าจากสายส่ง 22 กิโลวัตต์ จากหลวงพระบาง มี 1 หมู่บ้านใช้ไฟฟ้าจากเครื่องผลิตไฟฟ้าขนาด 0.4 กิ โลวัตต์ และมี 3 หมู่บ้านใช้ไฟฟ้าจากไดนาโมโดยบั่นจากน้ำ
4) การใช้น้ำ

ในเมืองจอมเพชรยังมีน้ำใช้ไม่เพียงพอ ประชาชนส่วนใหญ่่ใช้น้ำจากแหล่งน้ำธรรมชาติ เช่น ห้วยตาน แม่น้ำโขง (2 หมู่บ้าน) มี 12 หมู่บ้านใช้ประปาน้ำรินจากภูเขา มี 2 หมู่บ้านใช้น้ำจากบ่อน้ำตื้นในตัวเมืองซึ่งมีอ่าง เก็บน้ำ 1 แห่ง ขนาด 20 ล.บ.ม. ซึ่งในอนาคตทางตัวเมืองมีแผนการปรับปรุงและก่อสร้างระบบประปา ซึ่งจะให้ แหล่งน้ำดิบจากห้วยทอน บ้านแปง
5) ห้องส้วม

ร้อยละ 39.50 ของครัวเรือนมีห้องส้วมแบบส้วมซึม

ร้อยละ 60.50 ของครัวเรือนไม่มีส้วม
6) การค้าและการบริการ

ตลาด ในเทศบาลเมืองจอมเพชร ยังไม่มีตลาด ปัจจุบันประชาชนใช้พื้นที่ค่อนข้างทางบริเวณสามแยก ทางเข้าบ้านเชียงแมน และทางเข้าบ้านนาท่าเป็นแหล่งค้าขายแลกเปลี่ยนสินค้า

การค้าขายและบริการในเขตตัวเมือง เป็นกิจการขนาดเล็ก ตั้งอยู่สองฟากถนนเลขที่ 2511 ประกอบด้วย

$$
\text { -ร้านขายอุปกรณ์ไฟฟ้า (โทรทัศน์ เครื่องเสียง) } 4 \text { ร้าน }
$$

- ร้านขายเสื้อผ้า ผ้า	4 ร้าน
- ร้านซ่อมรถ จักรยานยนต์ รถยนต์	1 ร้าน
- ร้านขายน้ำมัน	1 ร้าน
- ร้านอาหารและเครื่องดื่ม	2 ร้าน

7) โรงเรียน ประกอบด้วย

- โรงเรียน อนุบาล	12 แห่ง
- โรงเรียนประถมต้น	43 แห่ง
- โรงเรียนประถมศึกษา	15 แห่ง
- โรงเรียนมัธยมศึกษา	3 แห่ง
- โรงเรียนมัธยมปลาย	1 แห่ง

8) สาธารณสุข

เมืองจอมเพชร มีโรงพยาบาล 1 แห่ง สถานีอนามัย 6 แห่ง และร้านขายยา 3 แห่ง
การขยายตัวของเมืองจอมเพชร
ตัวเมืองจอมเพชร ได้มีการวางแผนผังเมืองใหม่ให้เป็นศูนย์รวมของศูนย์ราชการต่างๆ ซึ่งส่วนต่อขยาย จากโครงการพัฒนาถนนจากเมืองหงสา-บ้านเชียงแมนจะเชื่อมต่อกับบ้านนาคำ บ้านห้วยต่าน บ้านนาไซ และบ้าน ม่วงคำ โดยในปี 2005 มีจำนวนประชากรทั้งสิ้น 1,967 คนต่อปี ทั้งนี้ทางกรมขัวทางหลวงพระบางได้คาดการณ์ว่า ประชากรในตัวเมืองจอมเพชรจะเติบ โตเฉลี่ยเท่ากับร้อยละ 3.6 ต่อปี จึงคาดว่าปี 2015 จะมีจำนวนประชากรใน พื้นที่ส่วนต่อขยายจาก โครงการรวมทั้งหมด 2,802 คนต่อปี และกำหนดให้ 1 ครอบครัวมีสมาชิกเฉลี่ยเท่ากับ 6 คน ต่อครอบครัว ดังนั้นจึงคาดว่าในปี 2015 พื้นที่ส่วนต่อขยายจาก โครงการฯจะมี 467 ครอบครัว และความต้องการ พื้นที่อยู่อาศัยในอนาคตมีค่าเท่ากับ 28.02 เฮกตาร์ (คำนวณความต้องการใช้เนื้อที่ 600 ตารางเมตรต่อ 1 ครอบครัว) นอกจากนี้ยังได้แบ่งการจัดสรรการใช้ประโยชน์จากที่ดินในอนาคตดังนี้

- เขตอนุรักษ์มรดกโลก	22	เฮกตาร์
- พื้นที่สีเขียว	284	เฮกตาร์
- เขตใจกลางเมือง	200	เฮกตาร์

- เขตขยายการปลูกสร้าง
- เขตตัวเมืองใหม่

533 เฮกตาร์

1,890 เฮกตาร์

- เขตทุ่งนา

328 เฮกตาร์

- เขตกสิกรรม 4,094 เฮกตาร์
- เขตป่าไม้ และธรรมชาติ 3,229 เฮกตาร์ รวม

9.2 สภาพเนวเส้นทางโครงการ

จุดเริ่มต้นโครงการที่ กม. ที่ $0+000$ ที่บริเวณสามแยกไปเมืองหงสาและน้ำตกตาด โดยสามแยกนี้จะ ตั้งอยู่ห่างจากบ้านเชียงแมนเป็นระยะทางประมาณ 5 กิโลเมตร โดยแนวเส้นทางใหม่จะตัดผ่านเขตป่า ไปบรรจบ เส้นทางเดิมที่บ้านนาไซเจริญ หลังจากนั้นจะเป็นการปรับปรุงตามแนวเส้นทางเดิมไปทางบ้านม่วงคำเพื่อทำการ เชื่อมต่อกับโครงการสะพานข้ามแม่น้ำโขงในอนาคต

จากการสำรวจพบว่าสภาพแนวเส้นทางโดยทั่วไปมีลักษณะเป็นถนนดินลูกรัง ขนาดความกว้าง $4-5$ เมตร การเดินทางลำบากโดยเฉพาะในฤดูฝนถนนจะเป็นหลุมบ่อ และลื่น ซึ่งทำให้เกิดความยากลำบากในการสัญจร รูปที่ 8.2-1 แสดงลักษณะแผนที่ภูมิประเทศของแนวเส้นทางใหม่

รูปที่ 9.2-1 แสดงลักษณะแผนที่ภูมิประเทศของแนวเส้นทางใหม่

9.3 สภาพสิงแวดล้อมปัจจุบันของแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร

9.3.1 แหล่งน้ำผิวดิน

สำหรับแหล่งน้ำผิวดินในบริเวณพื้นที่แนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร พบว่าจะมีการ ตัดแหล่งน้ำ 6 แห่ง เป็นลำน้ำขนาดใหญ่่ 2 แห่ง คือ ห้ววจันทร์ และห้วยตาน ที่เหลือเป็นลำน้ำขนาดเล็ก นอกจากนี้ แนวเส้นทางใหม่จะไปบรรจบกับแม่น้ำโขง

9.3.2 ดิน

จากการทบทวนข้อมูลชุดดินที่ปรากฎในพื้นที่โครงการตามข้อมูลในแผนที่ที่คินที่จัดทำโดย National Agricultural and Forestry Research Institute (NAFRI), ระวางเมืองหงสาและระวางเมืองออมเพชร ซึ่งจัดทำใน มาตราส่วน $1: 200,000$ พบว่าชนิดของดินบริเวณแนวเส้นทางใหม่ส่วนใหญู่เป็น ดินชุดย่อย Ferric ALISOLS และ ดินชุดย่อย Ferric ACRISOLS นอกจากนี้แนวเส้นทางยังประกอบไปด้วยชุดดินชนิดอื่นๆ เช่น ดินชุดย่อย Eutric CAMBISOLS ดินชุดย่อย Haplic LIXISOLS และ ดินชุดย่อย Ferric LUvISOLS
9.3.3 ป่าไม้

จากการสำรวจพื้นที่ป่าไม้บริเวณแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร แนวเส้นทางผ่าน ใกล้ป่าป้องกันภูนาง ป่าป้องกันภูทุ่ง และป่าป้องกันภูวี (รูปที่ $9.3-1$) ภายในระยะ 100 เมตรจากศูนย์กลางแนว เส้นทางพบสวนสัก มีขนาด 33 เฮกตาร์ นอกจากนี้ยังพบป่าเสื่อมโทรมมีไม้เป็นลักษณะไม้พุ่มเตี้ย ขนาด 17.79 เซคตาร์
9.3.4 การใช้ประโยชน์ที่ดิน

สำหรับผลการศึกษาการใช้ประโยชน์ที่ดินในระยะ 100 เมตรจากศูนย์กลางแนวเส้นทางใหม่ตาม แผนพัฒนาเมืองจอมเพชรนั้นแสดงดังตารางที่ 9.3.4-1 และรูปที่ 9.3.4-1 และมีรายละเอียดดังต่อไปนี้
(1) พื้นที่ชุมชน และสิ่งปลูกสร้าง มีพื้นที่ทั้งหมดประมาณ 5.86 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 2.57 ของพื้นที่ศึกษา ประกอบด้วย

U2 -หมู่บ้าน มีพื้นที่ทั้งหมดประมาณ 4.03 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 1.76 ของพื้นที่ศึกษา มีจำนวน 4 หมู่บ้าน ที่อยู่ตามเนวสายทางโครงการ ได้ แก่ บ้านนาคำห้วยตาล นาไซเจิญ และม่วงคำ ในเขตเมืองจอมเพชร

U4 -โรงเรียน มีพื้นที่ทั้งหมดประมาณ 1.10 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 0.48 ของพื้นที่ศึกษา ได้แก่ โรงเรียนประถมสมบูรณ์บ้านนาไซเจริญ

U5 -วัดมีพื้นที่ทั้งหมดประมาณ 0.73 เซคตาร์ คิดป็นพื้นที่ร้อยละ 0.32 ของพื้นที่ศึกษา ได้แก่วัดบ้านนาไซเจริญ
(2) พื้นที่เกษตรกรรม มีพื้นที่ทั้งหมดประมาณ 151.17 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 66.18 ของพื้นที่ ศึกษา ประกอบด้วย
$\mathrm{A} 1-น า ข ้ า ว$ มีพื้นที่ทั้งหมดประมาณ 5.82 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 2.55 ของพื้นที่ศึกษา เป็น พื้นที่ปลูกข้าวนาปี
$\mathrm{A} 2 / \mathrm{F} 2-$ พืชไร่/ป่าเสื่อมโทรม มีพื้นที่ทั้งหมดประมาณ 142.24 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 62.27 ของพื้นที่ศึกษา ลักษณะของพื้นที่ที่พบ เป็นการทำไร่เลื่อนลอย คือย้ายที่ไปเรื่อยๆ หลังจากที่ดินขาดความอุดม สมบูรณ์หรือมีวัชพืชเกิดขึ้นมาก ลักษณะการใช้ที่ดินประเภทนี้ ทำให้มีการทำลายป่าเพื่อการเพาะปลูก และ ในบริเวณพื้นที่ยังงคงพบเห็นสภาพป่าดั้งเดิมที่ถูกทำลาย ชนิดพืชไร่ที่ปลูกได้แก่ ข้าวไร่
$\mathrm{A} 3-$ สวน มีพื้นที่ทั้งหมดประมาณ 3.11 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 1.36 ของพื้นที่ศึกษา ไม้ผลที่พบปลูก ได้แก่ มะม่วง ขนุน และ กล้วย ในเขตพื้นที่บ้านนาไฮ
(3) พื้นที่ป่าไม้ มีพื้นที่ทั้งหมดประมาณ 55.53 เซคตาร์ คิดเป็นพื้นที่ร้อยละ 2227 ของพื้นที่ศึกษาประกอบด้วย

F2/F4 - ป่าเสื่อมโทรม/ไม้พุ่มเตี้ย มีพื้นที่ทั้งหมดประมาณ 17.79 เฮคตาร์ คิดเป็นพื้นที่ ร้อยละ 7.79 ของพื้นที่ศึกษา เป็นพื้นที่ป่าที่ถูกทำลาย ตัดต้นไม้ไปใช้ทำประโยชน์หรือเป็นพื้นที่ไร่เก่าแต่ปัจจุบัน ปล่อยร้าง และในบริเวณมีไม้พุ่มขึ้นปกคลุม

F 3 - พื้นที่ปลูกป่า/สวนสัก มีพื้นที่ทั้งหมดประมาณ 33.08 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 14.48 ของพื้นที่ศึกษา เป็นสวนป่าไม้เศรษฐูกิจ ไม้ที่พบปลูก ได้แก่ ต้นสัก พบปลูกตั้งแต่ กม.ที่ $6+000$ เป็นต้นไป
(4) พื้นที่อื่นๆ มีพื้นที่ทั้งหมดประมาณ 20.52 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 8.98 ของพื้นที่ศึกษาประกอบด้วย
$\mathrm{R}-$ ถนนปัจจุบัน มีพื้นที่ทั้งหมดประมาณ 7.6 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 3.33 ของพื้นที่ศึกษา ส่วนใหญ่ถนน ในพื้นที่เป็นถนนดินที่มีสภาพค่อนข้างทรุดโทรม

W- แหล่งน้ำ มีพื้นที่ทั้งหมดประมาณ 12.92 เฮคตาร์ คิดเป็นพื้นที่ร้อยละ 5.66 ของพื้นที่ศึกษา แม่น้ำสายหลัก ได้แก่ แม่น้ำโขง

ตารางที่ 9.3-1
การใช้ประโยชน์ที่ดินตามแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร (100 เมตรจากแนวเส้นทาง)

รูปแบบการใช้ที่ดิน	สัญญลักษณ์	ขนาดพื้นที่ (เฮกตาร์)	\%
พื้นที่ชุมชนและสิ่งปลูกสร้าง	U		
หมู่บ้าน	U2	4.03	1.76
โรงเรียน	U4	1.10	0.48
วัด	U5	0.73	0.32
รวม		5.86	2.57
พื้นที่เกษตรกรรม	A		
นาข้าว	A1	5.82	2.55
พืชไร่/ป่าเสื่อมโทรม	A2/F2	142.24	62.27
สวน	A3	3.11	1.36
รวม		151.17	66.18
ป่าไม้	F		
ป่าเสื่อมโทรม/ไม้พุ่มเตี้ย	F2/F4	17.79	7.79
พื้นที่ปลูกป่า (สวนสัก)	F3	33.08	14.48
รวม		50.88	22.27
อื่นๆ			
ถนนปัจจุบัน	R	7.60	3.33
แหล่งน้ำ	w	12.92	5.66
รวม		20.52	8.98
รวมทั้งหมด		228.43	100.00

รูปที่ 9.3-2 : การใช้ประโยชน์ที่ดินในปัจจุบันตามแนวเส้นทางใหม่ ตามแผนพัตเนาเมืองจอมเพชร (ต่อ)

9.3.5 การเกษตร

สำหรับกิจกรรมการเกษตรในบริเวณแนวเส้นทางใหม่ พรรณพืชส่วนใหญ่ที่ปลูกตามแนวเส้นทาง เป็นพืชไร่ เช่น ข้าวโพด นอกจากนี้ยังมีการปลูกไม้ตระกูลไม้สัก ตั้งแต่กม.ที่ 6 เป็นต้นไป โดยมีเนื้อที่ประมาณ 33 เยกตาร์ นอกจากนี้ยังมีการปลูกไม้ผลชนิดอื่น เช่น มะม่วง ขนุน และ กล้วย

9.3.6 การคมนาคม

สำหรับสภาพปัจจุบันของถนนที่เชื่อมแนวเส้นทางใหม่นั้นมีลักษณะเป็นถนนดินลูกรัง ขนาดความ กว้าง $4-5$ เมตร การเดินทางลำบากโดยเฉพาะในฤดูฝนถนนจะเป็นหลุมบ่อ และลื่นทำให้การเดินทางลำบาก ทำให้ ยานพาหนะที่ใช้เส้นทางนี้น้อยมาก (รูปที่ 9.3-1) โดยยานพาหนะส่วนใหญู่ที่ใช้เส้นทางเป็นรถอีแต๋น รถกระบะ และรถจักรยานยนต์ เพื่อขนส่งผลิตผลการเกษตรและติตต่อระหว่างหมู่บ้าน

รูปที่ 9.3-3: สภาพของเส้นทางคมนาคมที่เชื่อมกับแนวเส้นทางใหม่ในปัจดุบัน

9.3.7 การใช้ไฟฟ้า

บริเวณหมู่บ้านตามแนวเส้นทางใหม่นั้นส่วนใหญ่มีมารใช้ไฟฟ้าแล้ว โดยไฟฟ้าที่ได้ส่วนใหญ่มาจาก การจ่ายกระแสไฟฟ้าจากเสาไฟฟ้า (รูปที่ 9.3-1)

รูปที่ $9.3-4$: แนวเสไไฟฟ้าบริเวณหมู่บ้านที่ใกล้กับแนวเส้นทางใหม่
9.3.8 การจัดการของเสีย

บริเวณพื้นที่แนวเส้นทางใหม่พบเศษขยะ ซึ่งส่วนใหญ่เป็นบรรจุภัณ ฑ์สินค้าบริโภคจากร้านค้า ในชุมชนที่คนในชุมชนทิ้งลงบริเวณริมถนน ดังแสดงในรูปที่ 9.3-5

รูปที่ 9.3-5 : เศษขยะที่พบบริเวณริมถนนของแนวเส้นทางใหม่
9.3.9 สถานที่สำคัญและแหล่งท่องเที่ยว

จากการสำรวจภาคสนามบริเวณแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชรไม่พบสถานที่สำคัญ หรือแหล่งท่องเที่ยว อยู่ในระยะ 100 เมตร จากแนวเส้นทาง
9.3.10 เศรษฐกิจ-สังคม

จากการสำรวจภาคสนามเมื่อวันที่ $24-26$ พฤษภาคม พ.ศ. 2554 พบหมู่บ้านที่อยู่ใกล้เคียงแนวเส้นทาง ใหม่ตามแผนพัฒนาเมืองจอมเพชร แขวงหลวงพระบางจำนวน 4 หมู่บ้าน ได้แก่ บ้านนาคำ บ้านห้วยตาน บ้านนา ไซเจริญ และบ้านม่วงคำ ทั้ง 4 หมู่บ้าน มีประชากรทั้งสิ้น 1,838 คน 378 ครัวเรือน โดยส่วนใหญ่เป็น ชนเผ่าชาวลาว อายุของทั้ง 4 หมู่บ้านอยู่ที่ 19-150 ปี (ตารางที่ 9.3-2)

ตารางที่ 9.3-2
สภาพทางสังคมของหมู่บ้านที่อยู่ใกล้เคียงแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร

หมู่บ้าน	เมือง	ชนเผ่า	อายุของ หมู่บ้าน (ปี)	จำนวน ครัวเรือน	จำนวนประชากร		
					รวม	หญิง	ชาย
1. บ้านนาคำ	จอมเพชร	ลาว	150	174	834	412	422
2. บ้านห้วยตาน	จอมเพชร	ขมุ	19	60	317	150	167
3. บ้านนาไซเจริญ	จอมเพชร	ลาว	42	44	198	108	90
4. บ้านม่วงคำ	จอมเพชร	ลาว	$\begin{gathered} \text { มากกว่า } \\ 100 \end{gathered}$	100	489	278	211
รวมทั้งหมด				378	1,838	948	890

อาชีพหลักของประชากรใน 4 หมู่บ้าน ส่วนใหญู่ประกอบอาชีพเกษตรกรรม กิจกรรมการเกษตรที่ สำคัญได้แก่ทำนาปลูกข้าว และทำสวน ขนาดการถือครองที่คินอยู่ในระหว่าง $2-4$ เฮกตาร์ต่อครัวเรือน รายรับเฉลี่ย ของครัวเรือนอยู่ระหว่าง $750-800$ USD/คน/ปี $(5,625,000-6,000,000$ กีป/คน/ปี) และรายจ่ายเฉลี่ยของประชากรอยู่ ระหว่าง $500-800 \mathrm{USD} /$ คน/ปี ($3,750,000-6,000,000$ กีบ/คน/ปี) (ตารางที่ 9.3-3)

ตารางที่ 9.3-3 สภาพทางเศรษฐกิจของหมู่บ้านใกล้เกียงแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร

รายชื่อของหมู่บ้าน	อาชีพหลัก	การถือครองที่ดินเฉลี่ย (เฮกตาร์/ครัวเรือน)	รายรับ (USD/คน/ปี)	รายจ่าย (USD/คน/ปี)
1. บ้านนาคำ	เกษตรกรรม (ทำนา)	3	800	800
2. บ้านห้วยตาน	เกษตรกรรม (ทำนา ทำสวน)	2-3	800	530
3. บ้านนาไซเจริญ	เกษตรกรรม (ทำนา)	3	800	700
4. บ้านม่วงคำ	เกษตรกรรม (ทำนา)	4	750	500

ผู้นำชูมชนและประชาชนที่อาศัยในบริเวณ 4 หมู่บ้านเห็นด้วยต่อการพัฒนาแนวเส้นทางใหม่ตาม แผนพัฒนาเมืองออมเพชร โดยให้เหตุผลหลักว่าการพัฒนาเส้นทางดังกล่าวก่อให้เกิดความสะดวกสบายในการ สัญจรและการขนส่งผลผลิตทางการเกษตร

9.3.11 กิจกรรมประชาสัมพันธ์และการมีส่วนร่วมของประชาชน

กิจกรรมประชาสัมพันธ์และการมีส่วนร่วมของประชาชนที่ดำเนินการในพื้นที่แนวเส้นทางใหม่ตาม แผนพัฒนาเมืองจอมเพ็ด ได้แก่ เข้าพบและหารือกับภาคส่วนต่างๆที่เกี่ยวข้อง ได้แก่ ผู้แทนองค์การทรัพยกรน้ำและ สิ่งแวดล้อมแขวงหลวงพระบาง รองเจ้าเมืองจอมเพชร และหน่วยงานที่เกี่ยวข้องเมืองจอมเพ็ด นอกจากนี้ได้จัด ประชุมปรึกษาหารือขั้นบ้านในหมู่บ้านที่อยู่ใกล้เคียงโครงการ ได้แก่ บ้านนาไซเจริญ บ้านนาคำ บ้านห้วยตาน และ บ้านม่วงคำ กิจกรรมดังกล่าวดำเนินการในเดือนมีนาคมและเดือนพฤษภาคม 2554 ดังแสดงในภาพข้างล่างนี้

ผู้เข้าร่วมกิจกรรมให้ความร่วมมือในการให้ข้อมูล ข้อคิดเห็นและข้อเสนอแนะต่างๆเป็นอย่างดียิ่ง และ มีความเห็นด้วยต่อการพัฒนาโครงการเนื่องจากก่อให้เกิดความสะดวกสบายในการเดินทางและการขนส่ง สำหรับ ด้านผลกระทบคาดว่าจะมีระดับต่ำเพราะแนวเส้นทางส่วนใหญ่ตัดผ่านป่าเสื่อมโทรม และมีการรื้อย้ายบ้านเรือน เพียง. 12 หลังเท่านั้น

9.4 การประเมินสิงแวดล้อมเบื้องต้นของแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร

การประเมินสิ่งแวดล้อมเบื้องต้นของแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร ดังแสดง รายละเอียดในตารางที่ $9.4-1$

โครงการศึกษาความเป็นไปได้และออกแบบเบิ้องตัน

โครงการพัผมนาถนนจากเมืองหงสา-บ้านเขียงแมน (เมืองจอมเพชร หลวงพระขาง) สารารณรัฐประชาธิปไตยประชาชนลาว (สปป.ลาว)

ตารางที่ 9.4-1

รายการข้อมูลทางด้านสิ่งแวดล้อม (Environmental Checklist) สำหรับการประเมินด้านสิ่งแวดล้อมเบื้องต้น บริเวณแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร แขวงหลวงพระบาง

num	мamsmulaumiou		trinimammu			nuentionsiomit	
	W/	A	ถ่	2 2 Mnnas	1		
		\checkmark	\checkmark				
- Muntipunias	\checkmark						
	\checkmark						
- mamexulaunaiou							
- мamzmumixumunw							
- noinzivm							
		\checkmark	\checkmark				
		\checkmark	\checkmark				
	\checkmark						
		\checkmark		\checkmark			
						strum	
							T2umn menambitin
							Yaicjuza
\checkmark - Mniner							
		\checkmark	\checkmark				
	\checkmark						
		\checkmark	\checkmark				
L.							
		\checkmark	\checkmark				
जnume							thatsavylumish
							Suthen
		\checkmark	\checkmark				-
		\checkmark	\checkmark				
		\checkmark	\checkmark				
		\checkmark	\checkmark				
snimmian							¢iommalitianu
		\checkmark	\checkmark				
							vemamamanmiansionam

รายการข้อมูลทางด้านสิ่งแวดล้อม (Environmental Checklist) สำหรับการประเมินด้านสิ่งแวดล้อมเบื้องต้น บริเวณแนวเส้นทางใหม่ตามแผนพัฒนาเมืองจอมเพชร แขวงหลวงพระบาง (ต่อ)

num						ทnasamatom	savanzmmulicuzaiow
	W/	0	เ่า	2hunema	1		
- пnmmumixiznm							
- viulinéah							
	\checkmark						
	\checkmark						
	\checkmark						
	\checkmark						
	\checkmark						
							uxamilunovirait
							- mancuitumuxammin
	\checkmark						
		\checkmark			+V		
	\checkmark					Samaminine	
		\checkmark			$+\sqrt{ }$		
тоялารา							
		\checkmark		+V			
	\checkmark						
		\checkmark	\checkmark			maunimaturumu te nio	
mrinkirimanzmilumbum	\checkmark						
		\checkmark			+V		
	\checkmark						
							Thum
		\checkmark	\checkmark				
	\checkmark						
		\checkmark		+V			
		\checkmark	\checkmark				
		\checkmark			$+\mathrm{V}$		
4 InsTimumilumani							
		\checkmark	\checkmark				
ku7amı	\checkmark						
	\checkmark						
Asvemsagmiunin							

ภาคผนวก ก

Soil and Boring Data

PHOTOS OF COARSE AGGREGATE SAMPLING LOCATION

Project:	งานสำรวจด้านวิศวกรรมปฐพีและธรณีวิทยา โครงการศึกษาความเป็นไปได้		Co-ordinate:	805265 E
	และออกแบบเบื้องต้นถนนจากเมืองหงสา - บ้านเชียงแมน			2198224 N
Location:	เมืองจอมเพชร แขวงหลวงพระบาง สปป.ลาว		Station:	$84+000$
Material:	หินผสมคอนกรีต		Ground Ele.:	633 m MSL
Sample No.:	Q2-1	Date	of Sampling:	12/7/2011

PHOTOS OF LATERITIC SOIL SAMPLING LOCATION

Project:	งานสำรวจ	Co-ordinate:		791518 E
	และออกแบ			2191223 N
Location:	บ้านหัวยท	Station:		
Material:	ดินลูกรัง		Ground Ele.:	816 m MSL
Sample No.:		Date	of Sampling:	11/8/2011

PHOTOS OF LATERITIC SOIL SAMPLING LOCATION

Project:
งานสำรวจด้านวิศวกรรมปฐพีและธรณีวิทยา โครงการศึกษาความเป็นไปได้ Co-ordinate: 809873 E และออกแบบเบื้องต้นถนนจากเมืองหงสา - บ้านเชียงแมน
Location:
เมืองจอมเพชร แขวงหลวงพระบาง สปป.ลาว
Material: ดินลูกรัง
Sample No.: LT-3

	2201695 N
Station:	
Ground Ele.:	373 m MSL
Date of Sampling:	$12 / 8 / 2011$

ตารางสรุปผลการทดสอบต้วอย่างจากแหล่งวัสดก่อสร้าง
งานส่ารวจด้านวิศวกรรมปรีพและธรณีวิทยา โครงการศีกษาความเป็นไปได้และออกแบบเบื้องต้น ถนนจากเมืองหงสา - บ้านเชียงเมน (เมืองจอมเพชร แขวงหลวงพระบาง สปป. ลาว)

																					SUM	MARY	OF TE	STING R	ESUL	
PROJECT: งานล่ารวจลำนริศวกรรมป่ฐซีและธรณีิทยย โครงการศึกษาความเป็นไปได้ และออกแบบเบื่องค์น กนแจากเมืองหงสา - บ้านเชียงแมน LOCATIONเมืองหงสา-บ้านเชียงแมน (เ็็องจอมเพชร หลวงพระบาง) สปป. ลาว																										
SAMPLE No.	MATERIAL	location	co-ordmate		$\begin{aligned} & \text { UsCs } \\ & \text { GROUP } \end{aligned}$	gradation (\% PASSING SIEVE)								Atterberg limits			G	$\underset{\text { TEST }}{\text { ABSORPN }}$	abration TEST	SOUNDNESS\% TOTALLOSS	organic impurity	SOAK CBR TEST AT 95\% MDD.			MODIFIED COMP.	
			EASt	NORTH											PL (\%)	PI(h)						\% CBR			$\begin{aligned} & \text { MDD } \\ & U_{m^{3}} \end{aligned}$	
						3/8"	\# 4	88	${ }^{2} 16$	*30	\# 50	8100	\#200					\%	(\%) WEAR			0.1 in .	0.2 in .	SWELL\%		
L1-1	หบคลก		200644	2200574	GP	55.85	9.89	2.51	2.33	2.25	2.13	2.05	2.02	NONPLASTIC			-	-	25.20	-	.	37.07	41.49	-0.12	1.890	5.46
S1-1	บราดสบบลบบกรด	เกบสวนหลวง เดวงหลวงรเบาง	206996	2192253	SP-SM	100.00	100.00	100.00	99.61	79.98	18.02	5.51	5.22	NONPLASTIC			2.660	0.92	-	4.48	-	-	-	-	-	.
s2-1	บรงнสบควบก*ด	น่บบรองไน (็วบหลางหระบาง	200644	2200674	sp	100.00	97.57	86.57	64.31	23.07	8.33	4.84	4.72	NONPLASTIC			2663	0.60	-	2.12	-	-	-	-	-	-
Q1-1	หบนสบคอบกรด	Sta. $103+800$	189650	2199518	-	.	-	.	-	-	-	-	.	NONPLASTIC			2.792	1.11	15.20	0.88	COLOUR 1	-	-	-	-	-
02-1	หนнสมคอบหว	Sta. $84+000$	805265	2198224	-	.	.	-	-	.	-	-	-	NONPLASTIC			2.785	1.15	22.80	0.47	colour 3	-	-	-	-	-
LT-1	ดนบูกร์	บํานบนง (ธองหงสา	752309	2179514	Gc	79.97	72.83	57.43	48.20	42.49	37.44	30.79	30.18	26.13	8.93	17.20	-	-	-	-	.	25.49	21.91	0.10	1.830	11.18
LT-2	คบชูก\%	เทนหห์๐บรยชาว เรองวอมหชร	791518	2191223	GC	87.16	79.55	65.77	56.17	47.61	39.23	28.70	28.07	22.81	15.61	7.20	-	-	-	-	-	34.43	34.58	0.10	2.004	8.07
LT-3	Aนบูก\%		809873	2201695	Gc	78.82	72.68	56.17	43.54	29.11	21.22	17.56	16.84	29.22	20.69	8.53	-	-	-	-	-	62.00	66.40	0.10	1.942	9.15

ภาคผนวก ค

ผลการวิเคราะท์์สสสี่ยรภาาพพคันต่าง

รูปที่ ค -1 ผลการวิเคราะห์เสถียรภาพงานตัด กรณีตัดคันทางด้วยความลาดชัน $2: 1(\mathrm{~V}: \mathrm{H})$ สูง 5.00 เมตร และมีชานพักกว้าง 1.50 เมตร สำหรับช่วงที่มีลักษณะของชั้นหินเป็นหินทราย

รูปที่ค -2 ผลการวิเคราะห์เสถียรภาพงานตัด กรณีตัดคันทางด้วยความลาดชัน $2: 1(\mathrm{~V}: \mathrm{H})$ สูง 5.00 เมตร และมีชานพักกว้าง 1.50 เมตร และเพิ่มเสถียรภาพของลาดงานตัดด้วย Soilnail สำหรับช่วงที่มีลักษณะของ ชั้นหินเป็นหินทราย

รูปที่ ค -3 กรณีปรับความลาดชันของลาดงานตัดคันทาง และเพิ่มความกว้างของชานพักเป็น 2.00 เมตร และมีชานพักกว้าง 6.00 เมตร ทุก ๆ ความสูงของงานตัด 20 เมตร สำหรับช่วงที่มีลักษณะของชั้นหินเป็น หินทราย

รูปที่ ค -5 ผลการวิเคราะห์เสถียรภาพงานตัด กรณีตัดคันทางด้วยความลาดชัน $2: 1(\mathrm{~V}: \mathrm{H})$ สูง 5.00 เมตร และมีชานพักกว้าง 1.50 เมตร และเพิ่มเสถียรภาพของลาดงานตัดด้วย Soilnail สำหรับช่วงที่มีลักษณะของ ชั้นหินเป็นหินทรายแป้ง

รูปที่ ค -6 กรณีปรับความลาดชันของลาดงานตัดคันทาง และเพิ่มความกว้างของชานพักเป็น 2.00 เมตร และมีชานพักกว้าง 6.00 เมตร ทุก ๆ ความสูงของงานตัด 20 เมตร สำหรับช่วงที่มีลักษณะของชั้นหินเป็น หินทรายแป้ง

รูปที่ ค-7 ผลการวิเคราะห์เสถียรภาพงานตัด กรณีตัดคันทางด้วยความลาดชัน $2: 1(\mathrm{~V}: \mathrm{H})$ สูง 5.00 เมตร และมีชานพักกว้าง 1.50 เมตร สำหรับช่วงที่มีลักษณะของชั้นหินเป็นหินทรายและหินทรายแป้งที่มีความผุ พังสูงมาก

รูปที่ ค -8 ผลการวิเคราะห์เสถียรภาพงานตัด กรณีตัดคันทางด้วยความลาดชัน $2: 1(\mathrm{~V}: \mathrm{H})$ สูง 5.00 เมตร และมีชานพักกว้าง 1.50 เมตร และเพิ่มเสถียรภาพของลาดงานตัดด้วย Soilnail สำหรับช่วงที่มีลักษณะของ ชั้นหินเป็นหินทรายและหินทรายแป้งที่มีความผุพังสูงมาก

รูปที่ ค -9 กรณีปรับความลาดชันของลาดงานตัดคันทาง และเพิ่มความกว้างของชานพักเป็น 2.00 เมตร และมีชานพักกว้าง 6.00 เมตร ทุก ๆ ความสูงของงานตัด 20 เมตร สำหรับช่วงที่มีลักษณะของชั้นหินเป็น หินทรายและหินทรายแป้งที่มีความผุพังสูงมาก

ผลการรเบ่รี่ยบเทียบรราคาางานขุด
กับงาน Soil nail

Station 17+275

Case 1 Steep slope with Soilnail

1. Excavation $=743 \mathrm{~m} 3$

Soft Rock $(60 \%)=743 \times 0.6=445.8 \mathrm{~m} 3$
Soil $(40 \%)=743 \times 0.4=297.2 \mathrm{~m} 3$
\therefore Cost for Excavation $=(445.8 \times 200)+(297.2 \times 84)=114,125$ Bath
2. Soilnail Length 20 m . with Spacing 1.25 m .

Area for Soilnail $=71 \mathrm{~m} 2$
No. of Soilnail $=71 /(1.25 \times 1.25)=45.44 \approx 46$
Total Length of Soilnail $=46 \times 20=920 \mathrm{~m}$.
\therefore Cost for Soilnail $=(920 \times 1700)=1,564,000$ Bath

Summary Cost for Case $1=(1)+(2)=114,125+1,564,000$

$$
=1,678,125.00 \text { Bath }
$$

Case 2 Adjust Slope

1. Excavation $=1067 \mathrm{~m} 3$

Soft Rock $(60 \%)=1067 \times 0.6=640.2 \mathrm{~m} 3$
Soil $(40 \%)=1067 \times 0.4=426.8 \mathrm{~m} 3$
\therefore Cost for Excavation $=(640.2 \times 200)+(426.8 \times 84)=163,891$ Bath
\therefore Differential Cost for Excavation $=163,891-114,125=49,766$ Bath

ภาคผนวก จ

การอออกเเิบบ่โครงงสร้างขั้น่ทิาง
Highway Route No. $4 \mathrm{~B} \quad$ Section : $\quad 1 \quad$ Case No. 1
From Km. $00+000$ to $\mathrm{Km} . \quad 25+000$ District:

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015
Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	270	vpd.
Percentage of Heavy Vechicles	$=$	2.00	$\%(\mathrm{HB}+\mathrm{MT}+\mathrm{HT})$
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	15.00	Yrs.
Design Lane (N)	$=$	3	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1$.		g $(W)+1.0$	$05 \log (\mathrm{~N})$
ITN	$=$	7.12	
$\text { DTN }=\quad \operatorname{ITN} x \frac{(1+r)^{n}-1}{20 r}$	$=$	8.04	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$
$\therefore \quad$ Use design subgrade CBR	$=$	3.20

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$8.24 in
$=205.93 \mathrm{~mm}$	
	$=20.59 \mathrm{~cm}$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80\%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25\%	2.7	30	11.11
Selected Material A,CBR 10\%	3.0	0	0.00
Total T_{A} Design $=$		50.00	21.11

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

| Highway Route No. | 4 B | Section : | 2 | Case No. 1 |
| ---: | :---: | :---: | :---: | :---: | :---: |
| From Km. | $25+000$ | to Km. | $60+000$ | District : |

From Km. $25+000$ to $\mathrm{Km} . \quad 60+000$ District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015
Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

2. Design Subgrade CBR.

From subgrade CBR data;

| CBR at | $90 \quad$ Percentile $\quad=$ | 4.10 |
| ---: | ---: | ---: | ---: |
| $\therefore \quad$ Use design subgrade CBR | $=$ | 4.00 |

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$6.73 in
$=168.27 \mathrm{~mm}$	
	$=16.83 \mathrm{~m}$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80\%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25\%	2.7	20	7.41
Selected Material A ,CBR 10\%	3.0	0	0.00
Total $\mathrm{T}_{\text {A }}$ Design $=$		40.00	17.41

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 3 Case No. 1
From Km. $60+000$ to $\mathrm{Km} . \quad 85+000$ District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	150	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	15.00	Yrs.
Design Lane (N)	$=$	2	vpd.
Average Gross Weight of Heavy Truck (W) =		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$	33	(W) +1.05	$5 \log (\mathrm{~N})$
ITN	$=$	3.84	
$\operatorname{DTN}=\quad \operatorname{ITN} x \frac{(1+r)^{n}-1}{20 r}$	=	4.34	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$	3.20
$\therefore \quad$	Use design subgrade CBR	$=$	3.00

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$7.55 in\quad188.79 mm$\quad=$18.88 cm

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	25	9.26
Selected Material A ,CBR 10%	3.0	0	0.00
Total T_{A} Design $=$			

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 4 Case No. 1 From Km. $85+000$ to $\mathrm{Km} . \quad 88+000$ District :

1. Traffic Data

The road is designed in 2011

The road will be opened to traffic in 2015 Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$	3.20
$\therefore \quad$	Use design subgrade CBR	$=$	3.00

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{A} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$9.77 in $=244.26 \mathrm{~mm}$ $=24.43 \mathrm{~cm}$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	30	11.11
Selected Material A ,CBR 10\%	3.0	15	5.00
Total $\mathrm{T}_{\text {A }}$ Design		65.00	26.11

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 5 Case No. 1
From Km. $88+000$ to $\mathrm{Km} . \quad 122+000$ District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	1,005	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	=	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	15.00	Yrs.
Design Lane (N)	$=$	10	vpd.
Average Gross Weight of Heavy Truck (W) =		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$		(W) +1.0	$5 \log (\mathrm{~N})$
ITN	$=$	28.29	
$\operatorname{DTN}=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	$=$	31.94	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$	1.20
$\therefore \quad$	Use design subgrade CBR	$=$	1.20

3. Thickness Design of Pavement (T_{A} Full Depth)

$$
\begin{aligned}
& =\frac{9.19+3.97 \log \text { DTN }}{\mathrm{T}_{\wedge} \text { Full Depth }} \\
& =14.10 \mathrm{in} \\
& =352.40 \mathrm{~mm} \\
& =35.24 \mathrm{~cm}
\end{aligned}
$$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	25	12.50
Lateritic Soil (Subbase),CBR 25%	2.7	30	11.11
Selected Material A ,CBR 10\%	3.0	40	13.33
Total T_{A} Design $=$		95.00	36.94

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No.	4 B	Section :	6	Case No. 1
From Km.	$0+000$	to Km.	$122+000$	District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	=	1,005	vpd.
Percentage of Heavy Vechicles	=	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	7.00	Yrs.
Design Lane (N)	$=$	10	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log ($ ITN $)=-10.68+3.40 \log (S)+1$.	33	(W) +1.0	log (N)
ITN	$=$	28.29	
$\operatorname{DTN}=\quad \operatorname{ITN} x \frac{(1+r)^{n}-1}{20 r}$	=	11.73	

2. Design Subgrade CBR

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=10.00$	
$\therefore \quad$	Use design subgrade CBR	$=$	10.00

3. Thickness Design of Pavement (T_{λ} Full Depth)

$$
\begin{aligned}
\mathrm{T}_{\mathrm{A}} \text { Full Depth } & =\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}} \\
& =\begin{array}{r}
5.35 \mathrm{in} \\
\end{array} \quad \begin{aligned}
& =133.72 \mathrm{~mm} \\
& =13.37 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\text {A }}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	15	5.56
Selected Material A ,CBR 10\%	3.0	0	0.00
Total T_{A} Design $=$		35.00	15.56

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 1 Case No. 2 (Before 7 Year)
From Km. $00+000$ to Km . $25+000$ District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2015 will be used as a base data to estimate traffic in the design period.

From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	270	vpd.
Percentage of Heavy Vechicles	$=$	2.00	$\%(\mathrm{HB}+\mathrm{MT}+\mathrm{HT})$
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	=	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	=	7.00	Yrs.
Design Lane (N)	$=$	3	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)

$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.33 \log (\mathrm{~W})+1.05 \log (\mathrm{~N})$

	$=$	7.12	
ITN			
$\operatorname{DTN}=$	$\operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	2.95	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	90 Percentile	$=$	3.20
$\therefore \quad$	Use design subgrade CBR	$=$	3.00

3. Thickness Design of Pavement (T_{1} Full Depth)

$$
\begin{aligned}
& \mathrm{T}_{\wedge} \text { Full Depth } \frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}} \\
&=\begin{array}{r}
7.12 \mathrm{in} \\
\end{array} \\
&=178.11 \mathrm{~mm} \\
&=17.81 \mathrm{~cm}
\end{aligned}
$$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	25	9.26
Selected Material A ,CBR 10\%	3.0	0	0.00
Total T_{A} Design $=$		45.00	19.26

Highway Route No. 4B Section : 2 Case No. 2 (Before 7 Year) From Km. $25+000$ to $\mathrm{Km} . \quad 60+000$ District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	150	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	7.00	Yrs.
Design Lane (N)	$=$	2	vpd.
Average Gross Weight of Heavy Truck (W) $=$		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.33$	33	(W) +1.0	$\log (\mathrm{N})$
ITN	$=$	3.84	
$\operatorname{DTN}=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	$=$	1.59	

2. Design Subgrade CBR

From subgrade CBR data;

$$
\begin{array}{rrr}
\text { CBR at } & 90 \quad \text { Percentile } & 4.10 \\
\therefore \quad \text { Use design subgrade } \mathrm{CBR} & = & 4.00
\end{array}
$$

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$5.74 in
$=143.47 \mathrm{~mm}$	
	$=14.35 \mathrm{~cm}$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\wedge}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	15	5.56
Selected Material A ,CBR 10%	3.0	0	0.00
Total T_{A} Design $=$		35.00	15.56

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No.	4 B	Section $:$	3	Case No. 2 (Before 7 Year)
From Km. $60+000$ to Km.	$85+000$	District:		

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	150	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	=	5.60	\%
Design Life (n)	$=$	7.00	Yrs.
Design Lane (N)	$=$	2	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$,	(W) +1.0	log (N)
ITN	$=$	3.84	
$\operatorname{DTN}=\quad \operatorname{ITN} x \frac{(1+r)^{n}-1}{20 r}$	$=$	1.59	

2 . Design Subgrade CBR.
From subgrade CBR data;

$$
\begin{array}{rrr}
\text { CBR at } & 90 \quad \text { Percentile } & 3.20 \\
\therefore \quad \text { Use design subgrade } \mathrm{CBR} & = & 3.00
\end{array}
$$

3. Thickness Design of Pavement (T_{A} Full Depth)

$$
\begin{aligned}
& \mathrm{T}_{\wedge} \text { Full Depth } \\
&= \frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}} \\
&=6.44 \mathrm{in} \\
&=160.97 \mathrm{~mm} \\
& 16.10 \mathrm{~m}
\end{aligned}
$$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\text {A }}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	20	7.41
Selected Material A ,CBR 10%	3.0	0	0.00
Total $\mathrm{T}_{\text {A }}$ Design $=$		40.00	17.41

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section :
4
Case No. 2 (Before 7 Year)

From Km. $85+000$ to $\mathrm{Km} . \quad 88+000$
District :

1. Traffic Data

The road is designed in 2011

The road will be opened to traffic in 2015 Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	1,005	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of MB+HB		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	=	2.00	Lane
Lane distibution factor	=	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	7.00	Yrs.
Design Lane (N)	$=$	10	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	=	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$		(W) +1.0	$5 \log (\mathrm{~N})$
ITN	=	28.29	
$\mathrm{DTN}=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 \mathrm{r}}$	$=$	11.73	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$	3.20
$\therefore \quad$	Use design subgrade CBR	$=$	3.00

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{A} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$8.66 in \quad 216.44 mm $=21.64 \mathrm{~cm}$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	25	9.26
Selected Material A ,CBR 10\%	3.0	10	3.33
Total T_{A} Design $=$		55.00	22.59

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 5 Case No. 2 (Before 7 Year)
From Km. $88+000$ to Km . $122+000$

District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2015
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2015 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	1,005	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	7.00	Yrs.
Design Lane (N)	$=$	10	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1$.	33	(W) +1.05	$5 \log (\mathrm{~N})$
ITN	=	28.29	
$\operatorname{DTN}=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	$=$	11.73	

2. Design Subgrade CBR

From subgrade CBR data;

$$
\begin{aligned}
\mathrm{CBR} \text { at } & 90 \quad \text { Percentile } & = & 1.20 \\
\therefore \quad & \text { Use design subgrade } \mathrm{CBR} & = & 1.20
\end{aligned}
$$

3. Thickness Design of Pavement (X_{λ} Full Depth)
T_{\wedge} Full Depth

$=$	$\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
$=$	12.49 in
$=$	312.26 mm
$=$	31.23 cm

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	25	12.50
Lateritic Soil (Subbase),CBR 25%	2.7	30	11.11
Selected Material A ,CBR 10\%	3.0	25	8.33
Total T_{A} Design		80.00	31.94

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$
$\therefore \quad$ Use design subgrade CBR	$=$	3.20

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$7.75 in\quad193.72 mm 19.37 cm

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	25	12.50
Lateritic Soil (Subbase),CBR 25%	2.7	25	9.26
Selected Material A ,CBR 10%	3.0	0	0.00
Total T_{A} Design $=$		50.00	21.76

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 2 Case No. 2 (After 7 Year)

From Km. 25+000 to Km . 60+000
District :

1. Traffic Data

The road is designed in 2011

The road will be opened to traffic in 2015 Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	220	vpd.
Percentage of Heavy Vechicles	$=$	2.00	$\%(\mathrm{HB}+\mathrm{MT}+\mathrm{HT})$
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	=	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	8.00	Yrs.
Design Lane (N)	$=$	2	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$		(W) +1.05	$5 \log (\mathrm{~N})$
ITN	$=$	5.74	
$\text { DTN }=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	$=$	2.80	

2. Design Subgrade CBR

From subgrade CBR data;

CBR at	90 Percentile	$=$	4.10
$\therefore \quad$ Use design subgrade CBR	$=$	4.00	

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$
	$=$6.30 in \quad157.45 mm $=15.75 \mathrm{~cm}$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\text {A }}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80\%	2.0	25	12.50
Lateritic Soil (Subbase),CBR 25%	2.7	15	5.56
Selected Material A ,CBR 10\%	3.0	0	0.00
Total T_{A} Design $=$		40.00	18.06

PAVEMENT DESIGN BY Asphalt Institute 1.970 Method

Highway Route No. 4B Section : 3
From Km. $60+000$ to $\mathrm{Km} . \quad 85+000$

Case No. 2 (After 7 Year)
District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	220	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	=	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	=	8.00	Yrs.
Design Lane (N)	$=$	- 2	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)

$$
\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.33 \log (\mathrm{~W})+1.05 \log (\mathrm{~N})
$$

		$=$	5.74
ITN $=$			
DTN $=\frac{(1+r)^{n}-1}{20 r}$		2.80	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$	3.20
\therefore	Use design subgrade CBR	$=$	3.00

3. Thickness Design of Pavement (T_{A} Full Depth)

$\mathrm{T}_{\text {A Full Depth }}$	$\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}}$ $=$7.07 in $=176.65 \mathrm{~mm}$ 17.67 m

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\wedge}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	25	12.50
Lateritic Soil (Subbase),CBR 25%	2.7	20	7.41
Selected Material A ,CBR 10\%	3.0	0	0.00
Total \mathbb{T}_{A} Design			

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 4 Case No. 2 (After 7 Year)

From Km. $85+000$ to Km . $88+000$
District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	1,472	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	=	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	=	5.60	\%
Design Life (n)	$=$	8.00	Yrs.
Design Lane (N)	$=$	15	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$	33	(W) +1.0	$\log (\mathrm{N})$
ITN	$=$	42.24	
$\text { DTN }=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	$=$	20.61	

2. Design Subgrade CBR.

From subgrade CBR data;

$$
\begin{array}{rrrr}
\text { CBR at } & 90 \quad \text { Percentile } & = & 3.20 \\
\therefore \quad & \text { Use design subgrade } \mathrm{CBR} & = & 3.00
\end{array}
$$

3. Thickness Design of Pavement (T_{λ} Full Depth)

	$=\frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{T}_{\wedge} \text { Full Depth }}$
	$=$9.28 in \quad232.09 mm $=23.21 \mathrm{~cm}$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\wedge}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80\%	2.0	25	12.50
Lateritic Soil (Subbase),CBR 25\%	2.7	25	9.26
Selected Material A ,CBR 10\%	3.0	10	3.33
Total T A 2 Design $=$		60.00	25.09

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

| Highway Route No. | 4 B | Section : | 5 | Case No. 2 (After 7 Year) |
| ---: | :---: | :---: | :---: | :---: | :---: |
| From Km. | $88+000$ | to Km. | $122+000$ | District : |

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	=	1,472	vpd.
Percentage of Heavy Vechicles	=	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	=	0.50	
Growth Rate	=	5.60	\%
Design Life (n)	$=$	8.00	Yrs.
Design Lane (N)	$=$	15	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$	33	(W) +1.05	$\log (\mathrm{N})$
ITN	$=$	42.24	
$\operatorname{DTN}=\quad \operatorname{ITN} x \frac{(1+r)^{n}-1}{20 r}$	$=$	20.61	

2. Design Subgrade CBR.

From subgrade CBR data;

$$
\begin{array}{rrrr}
\mathrm{CBR} \text { at } & 90 \quad \text { Percentile } & = & 1.20 \\
\therefore \quad & \text { Use design subgrade } \mathrm{CBR} & = & 1.20
\end{array}
$$

3. Thickness Design of Pavement (T_{A} Full Depth)

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}} \text { Full Depth } \frac{9.19+3.97 \log \mathrm{DTN}}{\mathrm{CBR}^{0.4}} \\
&=\frac{13.39 \mathrm{in}}{} \\
&=334.83 \mathrm{~mm} \\
&=33.48 \mathrm{~cm}
\end{aligned}
$$

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	-	Applied	-
Crushed Rock (Base),CBR 80%	2.0	30	15.00
Lateritic Soil (Subbase),CBR 25%	2.7	30	11.11
Selected Material A,CBR 10\%	3.0	25	8.33
Total T_{A} Design $=$		85.00	34.44

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

| Highway Route No. | 4 B | Section : | 1 | Case No. 3 (After 7 Year) |
| ---: | :---: | :---: | :---: | :---: | :---: |
| From Km. | $0+000$ | to Km. | $25+000$ | District: |

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	395	vpd.
Percentage of Heavy Vechicles	$=$	2.00	$\%(\mathrm{HB}+\mathrm{MT}+\mathrm{HT})$
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	=	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	8.00	Yrs.
Design Lane (N)	$=$	4	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$	3	(W) +1.05	$5 \log$ (N)
ITN	$=$	10.61	
$\operatorname{DTN}=\quad \operatorname{ITN} x \frac{(1+r)^{n}-1}{20 r}$	=	5.18	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile		3.20
\therefore	Use design subgrade CBR	$=$	3.00

3. Thickness Design of Pavement (T_{A} Full Depth)

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	1.0	5	5.00
Crushed Rock (Base),CBR 80\%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25\%	2.7	25	9.26
Selected Material A ,CBR 10\%	3.0	0	0.00

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 2 and 3
From Km. $25+000$ to Km . $85+000$

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015 Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	220	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	$=$	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	8.00	Yrs.
Design Lane (N)	$=$	2	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$		(W) +1.05	$5 \log (\mathrm{~N})$
ITN	$=$	5.74	
$\operatorname{DTN}=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	$=$	2.80	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile	$=$	3.20
$\therefore \quad$	Use design subgrade CBR	$=$	3.00

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth		$9.19+3.97 \log$ DTN
		CBR ${ }^{0.4}$
	$=$	7.07 in
	$=$	176.65 mm
	=	17.67 cm

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	1.0	5	5.00
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	15	5.56
Selected Material A ,CBR 10%	3.0	0	0.00
Total $\mathrm{T}_{\text {A }}$ Design		$\mathbf{3 5 . 0 0}$	20.56

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

Highway Route No. 4B Section : 4 Case No. 3 (After 7 Year)
From Km. $85+000$ to $\mathrm{Km} . \quad 88+000$
District :

1. Traffic Data

The road is designed in 2011
The road will be opened to traffic in 2015
Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	1,472	vpd.
Percentage of Heavy Vechicles	=	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	=	2.00	Lane
Lane distibution factor	\#	0.50	
Growth Rate	$=$	5.60	\%
Design Life (n)	$=$	8.00	Yrs.
Design Lane (N)	$=$	15	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.3$		(W) +1.0	$\log (\mathrm{N})$
ITN	$=$	42.24	
$\operatorname{DTN}=\quad \operatorname{ITN} \times \frac{(1+r)^{n}-1}{20 r}$	$=$	20.61	

2. Design Subgrade CBR.

From subgrade CBR data;

CBR at	$90 \quad$ Percentile		3.20
$\therefore \quad$ Use design subgrade CBR	$=$	3.00	

3. Thickness Design of Pavement (T_{A} Full Depth)

T_{\wedge} Full Depth		$9.19+3.97 \log$ DTN
	$=$	CBR ${ }^{0.4}$
	$=$	9.28 in
	$=$	232.09 mm
	$=$	23.21 cm

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	1.0	5	5.00
Crushed Rock (Base),CBR 80%	2.0	20	10.00
Lateritic Soil (Subbase),CBR 25%	2.7	25	9.26
Selected Material A ,CBR 10\%	3.0	15	5.00
Total T_{A} Design		$\mathbf{6 0 . 0 0}$	29.26

PAVEMENT DESIGN BY Asphalt Institute 1970 Method

| Highway Route No. | 4 B | Section : | 5 | Case No. 3 (After 7 Year) |
| ---: | :---: | :---: | :---: | :---: | :---: |
| From Km. | $88+000$ to Km. | $122+000$ | District : | |

1. Traffic Data

The road is designed in 2011

The road will be opened to traffic in 2015 Therefore, the traffic data in 2022
will be used as a base data to estimate traffic in the design period.
From Traffic Volume data in 2022 , some control data can be summarized as follows;

Average Daily Traffic (ADT.)	$=$	1,472	vpd.
Percentage of Heavy Vechicles	$=$	2.00	\% ($\mathrm{HB}+\mathrm{MT}+\mathrm{HT}$)
Percentage of $\mathrm{MB}+\mathrm{HB}$		2.00	
Percentage of MT		1.00	
Percentage of HT		1.00	
Design Lane	$=$	2.00	Lane
Lane distibution factor	=	0.50	
Growth Rate	=	5.60	\%
Design Life (n)	$=$	8.00	Yrs.
Design Lane (N)	$=$	15	vpd.
Average Gross Weight of Heavy Truck (W)		61,729.6	lb (28.0 Ton)
Single Axle Load Limit (S)	$=$	24,250.9	lb (11.0 Ton)
$\log (\mathrm{ITN})=-10.68+3.40 \log (\mathrm{~S})+1.33$	3	(W) +1.0	$\log (\mathrm{N})$
ITN	$=$	42.24	
$\operatorname{DTN}=\quad \operatorname{ITN} \times \frac{(1+\mathrm{r})^{n}-1}{20 \mathrm{r}}$	$=$	20.61	

2. Design Subgrade CBR.

From subgrade CBR data;

$$
\begin{aligned}
\mathrm{CBR} \text { at } & 90 \quad \text { Percentile } & = & 1.20 \\
\therefore & \text { Use design subgrade } \mathrm{CBR} & = & 1.20
\end{aligned}
$$

3. Thickness Design of Pavement (T_{A} Full Depth)

4. Pavement Structure

Materials	Sr	Thickness (cm)	$\mathrm{T}_{\mathrm{A}}(\mathrm{cm})$
Double Surface Treatment	1.0	5	5.00
Crushed Rock (Base),CBR 80%	2.0	25	12.50
Lateritic Soil (Subbase),CBR 25%	2.7	30	11.11
Selected Material A ,CBR 10\%	3.0	25	8.33
Total T_{A} Design $=$			

